EP 012 - 2007 : L'équerre

Auteur du corrigé : Alain Soléan

TI-Nspire™ /TI-Nspire™ CAS

Avertissement: ce document a été réalisé avec la version 1.4; il est disponible dans sa version la plus récente sur notre site http://education.ti.com/france, menu Ressources pédagogiques.

Fichier associé : EP012_2007_Equerre.tns

1. Le sujet

Sujet 012 de l'épreuve pratique 2007 – Etude de lieux géométriques

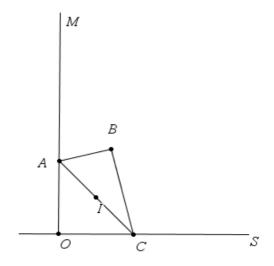
Enoncé

Le triangle ABC représente une équerre telle que AB = 3, AC = 6 et l'angle B est droit.

Les point A et C glissent respectivement sur les demi-droites perpendiculaires [OM) et [OS).

Le point I est le milieu du segment [AC].

On s'intéresse aux lieux des points I et B.



1. Observer les propriétés de la figure.

Avec un logiciel de géométrie, construire une figure dynamique illustrant la situation.

- **2.** Visualiser, à l'aide du logiciel, le lieu du point I quand C décrit la demi droite [OS). Quelle conjecture peut-on émettre sur la nature de ce lieu ?
- **3.** Visualiser, à l'aide du logiciel, le lieu du point B quand C décrit la demi droite [OS). Quelle conjecture peut-on émettre sur la nature de ce lieu ?
- **4.** -Donner les mesures des angles de l'équerre, puis celle de \widehat{AOB} (A distinct de O).
 - En déduire que le lieu de B est inclus dans une courbe simple dont on précisera la nature.
 - Démontrer que : $OB = 6 \sin (\widehat{AOB})$.
 - En déduire le lieu de B.

Production demandée

• Réponse écrite pour la question 4.

Compétences évaluées

- Compétences TICE
 - Construire une figure avec un logiciel de géométrie dynamique ;
 - Visualiser un lieu;
 - Tester les conjectures émises.
- Compétences mathématiques
 - Exploiter les propriétés du triangle rectangle ;
 - Utiliser les lignes trigonométriques dans un triangle.

2. Corrigé

1) Construction de la figure

Ouvrir une page Graphiques & géométrie.

Construire un **point**, le nommer O.

Construire une demi-droite [OM), puis la droite perpendiculaire à [OM) passant par O, nommée [OS).

Construire 2 segments, demander leur longueur et régler les longueurs à 3 cm et 6 cm.

Placer un **point sur** [OS) ; le nommer C.

A l'aide de l'outil **Compas**, construire un **cercle** (C_1) de centre C et de rayon 6 cm.

Construire le **point d'intersection** de ce cercle avec [OM), le nommer A. Construire le **segment** [AC]. A l'aide de l'outil **Compas**, construire un **cercle** (C_2) de centre A et de rayon 3 cm.

Construire le milieu de [AC], le nommer I.

Construire le **cercle** (C_3) de centre I passant par C. Construire les **points d'intersection** des cercles (C_3) et (C_2) . Nommer B le point d'intersection situé dans le quart de plan contenant I.

Construire les segments [AB] et [BC].

Cacher les cercles.

Les écrans sont obtenus à partir du logiciel sur ordinateur en « vue nomade ».

2) Lieu du point I

Avec l'outil **Lieu** faire apparaître le lieu du point I.

On peut conjecturer que I semble décrire un arc de cercle.

En effet, le triangle AOC est rectangle en O et I est le milieu de [AC] donc on a : AI = OI. Comme d'autre part, AI = IB = 3, on a : OI = 3.

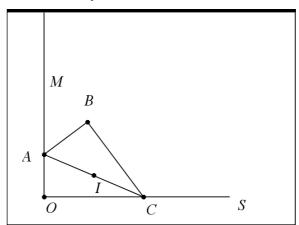
Donc I se trouve sur un cercle de centre O et de rayon 3

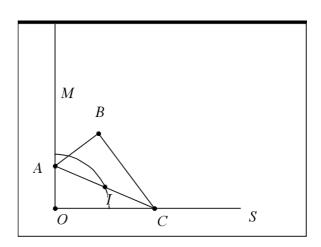
L'arc de cercle est en fait un quart de cercle limité par les demi-droites [OM) et [OS).

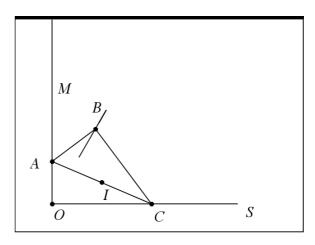
3) Lieu du point B

Sur la figure précédente, **Cacher** le lieu du point I et demander le **Lieu** du point B.

Le point B semble décrire un segment de droite. On peut conjecturer que les valeurs minimale et maximale de OB sont obtenues respectivement quand A est en O et quand OABC est un rectangle.







4) Démonstrations

Le triangle ABC est rectangle en B, AB = 3 et AC = 6 donc ABC est un demi-triangle équilatéral.

On peut donc en conclure que : $\widehat{ACB} = \frac{\pi}{6}$ et $\widehat{CAB} = \frac{\pi}{3}$.

Les quatre points O, A, B et C sont sur un même cercle de centre I donc les angles \widehat{AOB} et \widehat{ACB} sont inscrits et interceptent le même arc ; ils sont donc égaux, d'où $\widehat{AOB} = \frac{\pi}{6}$.

On peut donc affirmer que le point B appartient à la droite passant par O, telle que $\widehat{AOB} = \frac{\pi}{6}$.

Dans le triangle OAB, la « relation des sinus » permet d'écrire : $\frac{OB}{\sin{(OAB)}} = \frac{AB}{\sin{(AOB)}}$.

Alors,
$$\frac{OB}{\sin{(\widehat{OAB})}} = \frac{3}{\sin{(\frac{\pi}{6})}}$$
; de là, $OB = 6\sin{(\widehat{OAB})}$.

La longueur de OB est maximale quand [OB] est un diamètre du cercle de centre I et de rayon 3, donc quand OB = 6. On a alors $\sin(\widehat{OAB}) = 1$, donc le triangle OAB est rectangle en A. Le quadrilatère OABC est alors un rectangle.

Lorsque A est en O, on a : OB = AB = 3 et $\widehat{OAB} = \frac{\pi}{6}$.

De là, on a $3 \le OB \le 6$. B décrit donc un segment de droite.

3. Pour aller plus loin

Le problème reste le même si l'on modifie les valeurs de AC et AB (en conservant AB < AC) ; seuls le rayon du cercle que décrit I, la pente et la longueur du segment de droite décrit par B sont modifiés.