In this lesson you will investigate the relationship among the segments formed by 2 secants drawn to a circle, from a common external point.

Open secant segments.tns on your TI-Nspire handheld and follow along with your teacher, using this worksheet as a reference throughout the lesson.

Name \qquad

Segments Formed by Secants in a Circle
THEOREM: If two secants intersect outside a circle, then the product of the measures of the whole secant and external segment is equal to the product of the measures of the other whole secant and its external segment.

\section*{ \\ | 1.1 | 1.2 | 1.3 | 1.4 | DEG AUTO REAL |
| :--- | :--- | :--- | :--- | :--- |}

On page 1.2, you will find circle O with secants PBA \& PDC, with each external segment and the secants themselves labeled with their lengths. As you drag any of the endpoints of the 2 secants or common external point P, notice how " $a \cong b$ " and "c $\cong d$ " change to reflect the products of each of the secants' and their external segments. The congruent products indicate that the products of the measures of the external segments of the secants, and the secants themselves, are consistently equal.

Applying the Theorem

Now, use the theorem, and the diagrams below, to answer the questions on pages 1.3 to 1.6.

Segments Formed by Secants

1.6

\qquad

Geometric Proof

On page 1.8, you are presented with a 2 -column proof of the theorem. Complete the theorem by filling in the missing items in both the Statements and Reasons columns.

STATEMENTS	REASONS
1. Circle O with secants PBA and PDC, drawn from a common external point, P.	1. Given
2. $\angle \mathrm{BAD} \square \mathrm{m} \angle \mathrm{DCB}$	2.
3. $\angle \mathrm{P} \square \angle \mathrm{P}$	3.
4.	4. AA $\square \mathrm{AA}$
5.	5. Corresponding sides in similar triangles are in
proportion.	
6. $\mathrm{PA} \cong \mathrm{PB}=\mathrm{PC} \cong \mathrm{PD}$	6.

