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Abstract: This activity is an applications of derivatives and of definite integrals. It
introduces students to an interesting property of Quartics which students can verify using
the symbolic capacity of their calculators.

NCTM Principles and Standards:

Algebra standards

a) Understand patterns, relations, and functions

b) generalize patterns using explicitly defined and recursively defined functions;

c) analyze functions of one variable by investigating rates of change, intercepts, zeros,
asymptotes, and local and global behavior;

d) use symbolic algebra to represent and explain mathematical relationships;

e) judge the meaning, utility, and reasonableness of the results of symbol
manipulations, including those carried out by technology.

f) draw reasonable conclusions about a situation being modeled.

Problem Solving Standard build new mathematical knowledge through problem

solving; solve problems that arise in mathematics and in other contexts; apply and adapt a

variety of appropriate strategies to solve problems; monitor and reflect on the process of

mathematical problem solving.

Reasoning and Proof Standard

a) recognize reasoning and proof as fundamental aspects of mathematics;

b) make and investigate mathematical conjectures;

c) develop and evaluate mathematical arguments and proofs;

Key topic: Applications of derivatives. Inflection points. Application of Definite
Integrals - area between curves.

Degree of Difficulty: Advanced

Needed Materials: TI-89 calculator

Situation: Quartic polynomials have many interesting properties. The graphs of most
fourth degree polynomials have “three bumps”. Which of the bumps is the largest. In
this activity we’ll use calculus to investigate this question with the aid of the TI-89
calculator.

Consider the graph of f(x) = 3x" - 44x’ + 144x” |mm RAU IO FUNC whose three
bumps are: a relative minimum at x = 0, a relative maximum at x = 3, and another
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relative minimum at x = 8. I would like to suggest one way of measuring the size of these
bumps is to draw the line passing through the two inflection points of the polynomial and

find the area between each of the bumps and this line. [F= RAD AUTD __FUNC The TI-

89 can perform the calculations with ease:

The zeros of the second derivative give us the x-coordinates of
the points of inflection: 4/3 and 6
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Now we find the y-coordinates of the points of inflection
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We can find the equation of what I’1l call the “inflection line”,
y2(x), which passes through the two inflection points of the
original function
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The inflection line intersects the graph of the original
polynomial in four points. We are interested in the left most
and right most points whose x-coordinates are:
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The area of the left “bump”
405
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And, would you believe it? The area of the right “bump” is
268912

also exactly
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Finally - take a look at the area of the middle “bump”
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two bumps and therefore it is the sum of the other two as well.

. This is exactly twice the areas of each of the other
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Conclusion: These two shaded regions have the same arealm®

FAD AUTO FLUNC

This shaded region’s area is the sum of the two in the previous
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Try this with your own fourth degree polynomial!



