II-nspire

What is Your View Through the Tube?
 By: Sylvia Brown

Materials for Each Group: $1 \frac{1}{2}$ "PVC pipe cut into 3", 5 ", and 7" pieces, a tape measure, a yard stick, tape, recording sheet, and a TI-Nspire calculator.

Each Group:

$>$ A viewer (this student will look through the PVC pipe)
$>$ A spotter (this student will mark the view on the wall)
$>$ A measurer (this student will measure the distance from the wall to the end of the PVC pipe). To save time, these distances could be pre-determined and marked off before class.
$>$ A recorder (this student will record the information into the chart)
Procedure: A tape measure is taped vertically on a wall. The viewer will stand a designated distance from the tape measure. With the 3" PVC pipe in hand, the viewer will tell what length he/she sees on the wall. The data should be recorded in the chart below. Have students measure all values to the nearest sixteenth of an inch.

Data Tables:

Short Tube

Length of Tube

Distance from the Wall	$24 "$	$36 "$	$48 "$	$60 "$	$72 "$
Linear Vertical Height					

Long Tube

		Length of Tube			
Listance from the Wall	$24 "$	$36 "$	$48 "$	$60 "$	$72 "$
Linear Vertical Height					

II-nspire

1. Answer the following questions.
a. What is the independent variable? \qquad
b. What is the dependent variable? \qquad
c. Should the same person be the viewer throughout the experiment? Why or why not?
d. On which axis will the distance from the wall be plotted? \qquad
e. On which axis will the linear vertical height be plotted? \qquad
f. What happens to the rate of change as the tube gets longer? \qquad
g. What would the visible linear vertical height if the distance from the wall is zero?
2. Graph the data for each tube in the calculator.

Figure 2

	1.1			RAD AUTO REAL					${ }^{\text {caps }} \square$
	A	B	C	D	E	F	F	G	-
	-								
	2								-
	3								
	4								
	5								,
	5								v
	A1								

Figure 3
iii. Enter the Distances from the Wall into column A. Enter the Linear Vertical Height for 3" pipe in column B. Enter Linear Vertical Height for 5" pipe in column C. Enter Linear Vertical Height for 7" pipe in column D (Figure 4)

Figure 4

Figure 5
v. Do a similar operation for columns "B", "C", and "D" labeling them "TB3IN", TB5IN", TB7IN" respectfully. (Figure 6)

Figure 6

Figure 7

Figure 8
iii. Press (ment (3) 3) to choose Menu 3: Graph Type, 3: Scatter Plot (Figure 9).

Figure 9

Figure 10

Figure 11
vi. Press (tab four times or until you see the \uparrow in the graph area (Figure 12).

Figure 12

Figure 13

Figure 14
ix. Likewise, change the maximum and minimum x and y values on the graph. The points for the 3inch tube should appear. (Figure 15)

Figure 15
C. i. Press the totr to return to the Graphs \& Geometry page (Figure 29)
ii. Press (ment (3) 1) to choose Menu 3: Graph Type, 1: Function. (Figure 30 \& 31)

Figure 29

Figure 30

Figure 31
3. Let the student plot a line of best fit.
A. The student comes up with the equation by trial and error.
i. The student enters an equation in $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ form for f1(x).

For example: The student may enter $0.5 \mathrm{x}+7$. The graph of the line appears on the graph.
(Figure 45)

Figure 45

Figure 46

iv. Move the cursor next to the graph of the line using arrows on the NavPad. When the line begins to blink, press © (tar) to grab the line. (Figures 47 \& 48)	1.1 1.2 RAD AUTO REAL
	Figure 47
Notice, the hand closes up.	1.1 1.2 RAD AUTO REAL
	- ${ }_{\text {- }}^{\text {- }}$
	Figure 48
Now, press the $\boldsymbol{\Delta}$ and $\boldsymbol{\sim}$ on the NavPad to move the line closer to the points. (Figure 49) We now have an equation of a line of best fit. Press then tint to set the line in place.	1.1 1.2 RAD AUTO REAL
	(ildist,wall)
	Figure 49

II-nspire

B. Use the Menu to draw a line of best fit through our data points. (Omit student drawing line by Trial and Error if doing this step).
i. Press (nemur 5] to choose Menu 5: Points \& Lines, 4: Line
(Figure 50)
ii. Move the cursor pencil onto one of the points. The point will begin to blink. Press 气aine to set the point. (Figure 51)

Figure 50

Figure 51

Figure 52
iv. Press (esc) to exit the line mode.

II-nspire

v. Label the equation of the line.

Press (ment (1) (6) to choose Menu 1:Tools, 6:
Coordinates and Equations (Figure 53)

Move the cursor near the line. The line will begin to blink. The equation of the line will appear faded.

Press (atr) 气inicl to set the equation. (Figure 54)

Figure 53

Figure 54
4. Answer the following questions.
a. Use your graph for the 3 " tube to predict how much of the tape measure you could see if you stood 18 inches from the wall.
b. Use your 3" data again. Tell how many inches you could see if you stood 7 feet away.
c. If you could see 28 " on the wall using a 3 " tube, how far away are you from the wall?
\qquad
5. Answer the following questions.
a. Use your graph for the 5" tube to predict how much of the tape measure you could see if you stood 18 inches from the wall.
b. Use your 5" data again. Tell how many inches you could see if you stood 7 feet away.
c. If you could see 28 " on the wall using a 5 " tube, how far away are you from the wall?

II-nspire

6. Answer the following questions.
a. Use your graph for the 7 " tube to predict how much of the tape measure you could see if you stood 18 inches from the wall. \qquad
b. Use your 7" data again. Tell how many inches you could see if you stood 7 feet away.
c. If you could see 28 " on the wall using a 7 " tube, how far away are you from the wall?
\qquad
7. If Jacob has the given tube shown below. What do you think his graph will look like?

\qquad
8. Tom uses a 4 inch tube to view a tree 30 feet away (note the units). The tube has an inside diameter of 1.25 ". How tall is the tree (in inches)? \qquad

9. Below are the graphs of the curves for both Tammy and Steve. How might the dimensions of Tammy's tube differ from Steve's?

