Concepts/Skills:
Patterns, problem solving

Calculator:
TI-30Xa SE or TI-34

Repeating Elevens

Objectives:

Students compute multiples of 11, 111, 1111, and so forth, search for patterns in the products, and write generalizations of those patterns.

Getting Students Involved

- Why is it important in doing mathematics to see patterns?

Mathematics is the study of patterns. One goal in mathematics is to find generalizations.

Making Mathematical Connections

Ask the students the following questions:

- What can you tell me about the product of 11 times any single digit?

The product is a two-digit number with the single digit repeated as the tens and ones digits.

Answers will vary.

You may want to review the use of the [K] key.
num Transparency Master K: Repeat an Operation

Carrying Out the Investigation

If students are having trouble finding patterns, let them work in pairs or small groups and encourage them to talk to their partners about the products.

If students are having trouble writing generalizations, let them talk to their partners about the patterns they see in the products.

- What is changing in that pattern? What is remaining the same?
- How could you express that pattern in general terms or in symbolic terms?

Encourage students to minimize the number of keys they press. For example, in problem 1, x 11 can be stored in memory by using the [K] key (on the TI-30Xa SE).

Making Sense of What Happened

Have students share the patterns they found and the generalizations they wrote. Special attention should be given to the language students use in stating generalizations.

Continuing the Investigation

Investigate the patterns if you multiply a two-digit number by 101.
Investigate the patterns if you divide a two-digit number by 101.

Solutions

1. $11 \times 1=11$
$11 \times 2=22$
$11 \times 3=33$
$11 \times 4=44$
$11 \times 5=55$
$11 \times 6=66$
$11 \times 7=77$
$11 \times 8=88$
$11 \times 9=99$
$11 \times 10=110$
$11 \times 11=121$
$11 \times 12=132$
$11 \times 13=143$
2. Each product is 10 times the number plus the number itself.
3. Answers will vary.
4. $11 \times 18=198$
$11 \times 19=209$
5. $\mathrm{AB} \times 11=\mathrm{AB} 0+\mathrm{AB}$
6. $14 \times 111=1554$
$18 \times 111=1998$
$24 \times 111=2664$
$26 \times 111=2886$
$34 \times 111=3774$
$36 \times 111=3996$
$52 \times 111=5772$
$54 \times 111=5994$
$74 \times 111=8214$
$78 \times 111=8658$
7. Each product is 100 times the number plus 10 times the number plus the number itself.
8. Answers will vary.
9. $32 \times 111=3552$
$41 \times 111=4551$
$53 \times 111=5883$
$90 \times 111=9990$
$98 \times 111=10878$
10. $\mathrm{AB} \times 111=\mathrm{AB} 00+\mathrm{AB} 0+\mathrm{AB}=\mathrm{AB} 00$

11. When you multiply 111 by any two-digit number with a digit sum less than 10 , the thousands digit of the product is the same as the tens digit of the given number, the hundreds and tens digits of the product are the sum of the digits of the given number, and the ones digit of the product is the same as the ones digit of the given number.
When you multiply 111 by any two-digit number with a digit sum greater than 9 , the pattern changes because of the need to "carry" the tens digit of the digit-sum.
12. $24 \times 1111=26664$
$26 \times 1111=28886$
$34 \times 1111=37774$
$36 \times 1111=39996$
$54 \times 1111=59994$
$58 \times 1111=64438$
13. Answers will vary.
14. $14 \times 1111=15554$
$44 \times 1111=48884$
$63 \times 1111=69993$
$61 \times 1111=67771$
$84 \times 1111=93324$
15. Each product is the sum of 1000 times the number plus 100 times the number plus 10 times the number plus the number itself.
$\mathrm{AB} \times 1111=\mathrm{AB} 000$
AB00
AB0
$+\quad \mathrm{AB}$
16. Answers will vary.
17. $63 \times 111=6993$
$63 \times 1111=69993$
$63 \times 11111=699993$
$64 \times 111=7104$
$64 \times 1111=71104$
$64 \times 11111=711104$
$65 \times 111=7215$
$65 \times 1111=72215$
$65 \times 11111=722215$
$66 \times 111=7326$
$66 \times 1111=73326$
$66 \times 11111=733326$
$67 \times 111=7437$
$67 \times 1111=74437$
$67 \times 11111=744437$
18. There are many patterns students might describe:

- Ones digit of each product is the same as the ones digit of the given number.
- Tens digit of each product is the same as the ones digit of the sum of the digits of the given number.
- Hundreds of the first product in each set is repeated more often in successive products.

