Pre Calculus
 Exploration on the exponential functions: Properties of Exponential Functions

Name: \qquad
Period: \qquad 2007-2008

In this activity, you will investigate properties of the exponential functions. You will need a TI Nspire calculator. Select a new application: graphs and geometry. Graph $y=e^{x}$. To get the best viewing window, you will need to make the changes yourself. Record your viewing window below and sketch the graph....include significant points:
$\mathrm{Xmin}=$ \qquad
Xmax $=$ \qquad
Ymin $=$ \qquad
Ymax $=$ \qquad
Why did you choose those particular values? \qquad

I. Zeroes, maximum values, minimum values

- Put a point on your graph. Grab the point and drag it on the curve. Find the following. Give your answers as ordered pairs (if possible):

Zeroes: \qquad

Maximums: \qquad

Minimums: \qquad
As you drag the point so that the x-coordinate so that it gets larger, what happens to the y-coordinate? In other words, what is the limiting value for the function? \qquad
Write your response as a formal "limit".

As you drag the point so that the x-coordinate gets smaller (goes to negative infinity), what happens to the y-coordinate? In other words, what is the limiting value for the function?

Write your response as a formal "limit".

Is the function increasing or decreasing? Does it ever change from increasing to decreasing or from decreasing to increasing? \qquad
II. Horizontal shrinking and stretching $y=e^{b x}$

- Grab the curve and drag it to the left but keeping to the right of the y-axis. What is happening to the coefficient of x , i.e. b ? Describe how the graph has changed. Look at the ENTIRE function. Write your conclusions below:
- Grab the curve and drag it to the right. Watch the coefficient of x, i.e. \boldsymbol{b}. What happens to \boldsymbol{b} ? Drag it until the $\boldsymbol{b}=0$. What does the graph look like? Why?
- Grab the curve again and drag the graph so that the exponent becomes negative. What happens? Can you drag the function so that the function becomes negative?

Conclusions: What are the main characteristics that you discovered about the stretching and shrinking of exponential functions? Be as detailed as possible.
\qquad
\qquad
\qquad
\qquad
III. What have you learned? Use your knowledge from the exploration to sketch the following graphs (include 2 significant points):
(a) $y=e^{x}$
(b) $y=e^{-x}$

(c) $y=e^{2 x}$

(e) $y=e^{-.5 x}$

(d) $y=e^{.5 x}$

