Graphing Functions

Teacher Guide

by: Tina Hill, Daniel Boone High School, Washington County, TN

Activity Overview

This activity may be used as a review of functions. It is set up with self-check answers. Students determine if the graph is a function and, if it is, name the function. The students will also graph various functions and compare/contrast the graphs.

Concepts

- Graphing functions

Tennessee Standards

- Algebra I
- 3102.1.14 Apply graphical transformations that occur when changes are made to coefficients and constants in functions.
- 3102.3.16 Determine if a relation is a function from its graph or from a set of ordered pairs.
- 3102.3.17 Recognize "families" of functions.
- 3102.3.18 Analyze the characteristics of graphs of basic linear relations and linear functions including constant function, direct variation, identity function, vertical lines, absolute value of linear functions. Use technology where appropriate.
- 3102.5.6 Draw qualitative graphs of functions and describe a general trend or shape.

Teacher Preparation

- Load or have the students load the tns file: graphing functions.tns
- There is no student sheet with this activity. The teacher may request answers to the compare and contrast questions. If so, the student may write the answers on paper.

TI Nspire Applications

Graphs \& Geometry

Notes

Question/Answer

Problem 1

In problem 1 students name the function.

Students observe the given function. They then decide if the graph is a function using the vertical line test; then classify the function by clicking on the circle of the correct function name.	\square

Graphing Functions

Teacher Guide

Graphing Functions

Teacher Guide

	${ }^{10}$ 个"	Name the tunction
		\bigcirc absolute value
		\bigcirc const
	${ }^{2}$	\checkmark Opie
		- 0 Lnear
		\checkmark Onot atuntion

Problem 2

In problem 2 students graph more than one equation on the same graph of the linear function family. The students then compare and contrast the graphs.

On page 2.2, students graph three linear functions with different slopes and intercepts.		
	Graph the following linear functions: $f(x)=x$ $f(x)=2 x$ $f(x)=4 x+3$	
On page 2.3, students' answers will vary. An example: All three graphs were straight lines but they had different slopes and y -intercepts.	$4 \sqrt{2.1} \sqrt{2.2}{ }^{2.3}$ *graphing fu. ons $\boldsymbol{\square}$	
	Question	
	Compare and contra	the three graphs.
	Answer	V
	T	

Problem 3

In problem 3 students graph more than one equation on the same graph of the quadratic function family. The students then compare and contrast the graphs.

Graphing Functions

Teacher Guide

On page 3.2, students graph quadratic
equations with different x-coefficients and y -
intercepts.

On page 3.3, students' answers will vary. An
example: All four graphs were parabolas but
(hey had different y-intercepts, different vertices,
and different lines of symmetry.

Problem 4

In problem 4 students graph more than one equation on the same graph of the exponential function family. The students then compare and contrast the graphs.

On page 4.2, students graph exponential equations with different exponents and base.	Graph the following exponential functions: $f(x)=2^{x}$ $f(x)=2^{x-1}$ $f(x)=2^{x}+1$ $f(x)=4^{x}$
On page 4.3, students' answers will vary. An example: All four graphs were didn't touch the xaxis. They crossed the y-axis at different coordinates. They are all increasing.	
	Question
	Compare and contrast the four graphs.
	Answer $\quad \geqslant$

Graphing Functions

Teacher Guide

Problem 5

In problem 5 students graph more than one equation on the same graph of the absolute value function family. The students then compare and contrast the graphs.

	4 4.3 5.1 5.2 *graphing fu...ons
On page 5.2, students graph absolute value equations.	Graph the following absolute value functions: $y=\|x\|$ $y=\|x+3\|$ $y=\|x\|-4$ $y=-\|x\|$
On page 5.3, students' answers will vary. An example: All of the graphs form a " v ". The graph with the negative on the outside of the absolute value made the graph upside-down. The others were shifted.	
	Question
	Compare and contrast the four graphs.
	Answer $\quad \forall$

Problem 6

In problem 6 students graph more than one equation on the same graph of the sinusoidal function family. The students then compare and contrast the graphs.

On page 6.2, students graph sinusoidal equations.	46.3 6.1 6.2 *graphing fu...ons *	
	Graph the following sinusoidal functions: $f(x)=\sin (x)$	13.42
	$\begin{aligned} & f(x)=\cos (x) \\ & f(x)=2 \sin (x) \\ & f(x)=2 \cos (x) \end{aligned}$	
		(8) -13.42

Graphing Functions

Teacher Guide

On page 6.3, students' answers will vary. An example: The graphs have the same wavy pattern but the $2 \sin (x)$ is longer.		
	Question	
	Compare and contrast the two sine graphs.	
	Answer A	*
On page 6.4, students' answers will vary. An example: The graphs have the same wavy pattern but the $2 \cos (x)$ is longer.		
	Question	
	Compare and contrast the two cosine graphs.	
	Answer \approx	
	\uparrow	
On page 6.5, students' answers will vary. An example: The graphs have the same wavy pattern, but the $\cos (x)$ crosses the y-axis at $(0,1)$ and the $\sin (x)$ crosses the y-axis at the origin.		
	Question	
	Compare and contrast the sine vs cosine graphs.	
	Answer $\quad \approx$	
On page 6.6, students' answers will vary. An example: The graphs will have the same wavy pattern and the graphs will move up 4 units, but they will cross the y-axis at different points.		
	Question	
	What do you think the graphs of $f(x)=2 \cos (x)+4 \text { and } f(x)=2 \sin (x)+4 \text { will }$ look like?	
	Answer $\quad \approx$	
		$\uparrow \square$
On page 6.7, the students' will test their prediction.	$\sqrt{6.5} \sqrt{6.6}$ /6.7) *graphing fu...ons	
	Graph the functions $f(x)=2 \cos (x)+4$ and $f(x)=2 \sin (x)+4$ Was your predicition correct?	${ }^{13.42} \uparrow$
		$\cdots 10$
		(1) -13.42

