Volume by Cross Sections

Time Required
15 minutes

Activity Overview

In this activity, students will be introduced to the concept of finding the volume of a solid formed by cross sections of a function that form certain shapes. Since volume is the area of the base times the height and $d V=$ Area $\cdot d x$, student review areas of various shapes like squares, semicircles, and equilateral triangles using self-check questions. 3D Parametric and Geometry Trace are used to help students get a "3D" visual of the volume being considered. Students will practice what they learn with exam-like multiple-choice questions.

Topic: Volume by Cross Sections

- Applications of integration
- Volume by cross sections

Teacher Preparation and Notes

- Part 1 of this activity takes less than 15 minutes. Part 2 contains three multiple-choice exam-like questions that have accompanying visual animations that can be used as an extension or homework.
- Students will write their responses directly into the TI-Nspire handheld and/or on the accompanying handout. On self-check questions, after answering the question students can press menu and select Check Answer (or ctril ©). If desired, by using the TI-Nspire Teacher Edition software, teachers can change these self-check questions to exam mode so students cannot check their answers. On any question, click the Teacher Tool Palette and select Question Properties. Change the Document Type from Self-Check to Exam.
- To download the student TI-Nspire document (.tns file) and student worksheet, go to education.ti.com/exchange and enter "12281" in the keyword search box.

Associated Materials

- VolumeByCrossSections_Student.doc
- VolumeByCrossSections.tns

Suggested Related Activities

To download any activity listed, go to education.ti.com/exchange and enter the number in the keyword search box.

- Solids of Revolution (TI-Nspire technology) - 17390
- Solids of Revolution Between Two Curves (TI-Nspire technology) — 17574

Part 1 - Setting Up The Problem And Understanding The Concept

In this section students are introduced to the concept of finding the volume of a solid formed by cross sections of a function that form certain shapes. Since volume is the area of the base times the height and $d V=$ Area $d x$, student review areas of various shapes like squares, semicircles and equilateral triangles.

Part 1 ends with students finding the volume of a solid with cross sections that are equilateral triangles.

Using Geometry Trace (MENU > Trace > Geometry
Trace) on page 1.7 can give a visual similar to the one on the right. Geometry Trace requires that the students click (not grab) both the point and the triangle only once. They then can grab and move $d x$.
On page 1.10 there is a three dimensional model of the volume. Press \boldsymbol{A} to auto rotate. Press \boldsymbol{x} to zoom in. Press \div to zoom out. Other orientations can be quickly seen by pressing $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ or $\mathbf{0}$.

Student Solutions

1. $d x$
2. a. The area of a square with side x is x^{2}
b. $\frac{1}{2} \pi r^{2}$
3. $\frac{1}{2} y \frac{\sqrt{3}}{2} y$
4. $0.433013 \mathrm{~cm}^{2}$
5. Labeled (x, y) and the differential looks similar to the graph on page 1.7.
6. $\int_{0}^{2} \frac{1}{2} y \frac{\sqrt{3}}{2} y d x=\int_{0}^{2} \frac{1}{2}\left(\sqrt{x} \cdot e^{-x^{2}}\right) \frac{\sqrt{3}}{2}\left(\sqrt{x} \cdot e^{-x^{2}}\right) d x$

$$
=\int_{0}^{2} \frac{\sqrt{3}}{4} x \cdot e^{-2 x^{2}} d x
$$

If students use u-substitution, $u=-2 x^{2}, d u=-4 x d x$ and the limits of integration are from 0 to -8.
$-\frac{\sqrt{3}}{16} \int_{0}^{-8} e^{u} d u=-\frac{\sqrt{3}}{16}\left(e^{-8}-1\right)=\frac{\sqrt{3}}{16}\left(1-\frac{1}{e^{8}}\right)$

Part 2 - Homework

This section enables students to get a visual of challenging exam-like multiple-choice questions. Question 1 and 2 are not calculator active; Question 3, with its decimal approximation answer, is a calculatoractive question. Students should show their work on the first two questions and show their set up on the third question.

Student Solutions

1. (B) $\frac{3 \pi}{32}$ units 3
2. (B) 2 units 3
3. (D) 1.57 units 3

