Problem 1 – Graphing systems of linear equations

Sketch each graph. How many solutions does each system have?

1.
$$\begin{cases} y = 2x - 3 \\ y = x - 1 \end{cases}$$

2.
$$\begin{cases} y = -3x + 3 \\ y = -3x - 1 \end{cases}$$

$$3. \begin{cases} 4x + 2y = 6 \\ y = -2x + 3 \end{cases}$$

Sketch:

Sketch:

Sketch:

Number of solutions:

Number of solutions:

Number of solutions:

These three graphs show all the possible ways two lines can relate to each other.

If the two lines...

Then the system has...

- Cross at a single point
- **----**
- One solution
- Never cross (are parallel)
 - No solution
- Are really the same line
- - Infinitely many solutions

Problem 2 – Create your own system

Original Line	One Solution	No Solutions	Infinitely Many Solutions
page 2.2 13 21 22 HowmanySolons 15 y 20 20 20 20 20 20 20	\begin{cases} y = \ y = \end{cases}	\begin{cases} y = \ y = \end{cases}	\begin{cases} y = \ y = \end{cases}
page 2.5 23 24 25 HowManySoLons	\begin{cases} y = \ y = \end{cases}	$\begin{cases} y = \\ y = \end{cases}$	$\begin{cases} y = \\ y = \end{cases}$
page 2.6 2.4 2.5 2.6 Howking Solons	\begin{cases} y = \ y = \end{cases}	\begin{cases} y = \ y = \end{cases}	\begin{cases} y = \\ y = \\ \end{cases}
page 2.7 2.5 2.6 2.7	\begin{cases} y = \ y = \end{cases}	\begin{cases} y = \ y = \end{cases}	\begin{cases} y = \ y = \end{cases}

Compare the equations for the lines you drew with the equations of the original line that was drawn for you.

- 4. Which equations have the same slope as the original equation? Those that form a system with one solution, no solution, or many solutions?
- 5. Which equations have the same y-intercept as the original equation? Those that form a system with one solution, no solution, or many solutions?
- 6. Which equations are equivalent to the original equation?
- 7. Why is it sometimes hard to see that two equations in a linear system are equivalent? Give an example.
- 8. Complete each statement to create some rules about the number of solutions for a linear system of equations.
 - A linear system has no solution if the equations have _____ slopes and _____ *y*-intercepts.
 - A linear system has infinitely many solutions if the equations have _____ slopes and _____ *y*-intercepts.
 - A linear system has one solution if the equations have ____ slopes and ____ yintercepts.

Determine how many solutions each of the following systems has without graphing.

$$9. \begin{cases} y = x \\ y = 2x \end{cases}$$

10.
$$\begin{cases} 3x + 4y = 12 \\ 2x + 4y = 8 \end{cases}$$

11.
$$\begin{cases} y = \frac{1}{2}x + 1 \\ y = \frac{1}{2}x + 8 \end{cases}$$

10.
$$\begin{cases} 3x + 4y = 12 \\ 2x + 4y = 8 \end{cases}$$
11.
$$\begin{cases} y = \frac{1}{2}x + 1 \\ y = \frac{1}{2}x + 8 \end{cases}$$
12.
$$\begin{cases} y = \frac{1}{2}x + 2 \\ -2y = -x - 4 \end{cases}$$