Objective

- Students will develop an understanding of solving a system of equation using the method of substitution.

Applicable TI InterActive! Functions

```
- Solve solve(equation, variable)
- Define function_name:= function
```


Solving Systems of Equations: The Method of Substitution

Problem

There are several methods that can be used to solve a system of equations.
Students will employ the method of substitution to solve systems of equations.

Pre-Activity

Solve the system $\begin{aligned} & 3 x+y=5 \\ & 4 x-y=2\end{aligned}$ by using the substitution method and verify graphically.

1. Let eq1 be $3 x+y=5$ and eq2 be $4 x-y=2$.
2. Using paper and pencil, have the students solve eq1 for y in terms of x. Then have them substitute this expression in eq2 for y and solve for x. And finally, have students substitute the x-value into eq1 and solve for y.
3. Students should open a new TI InterActive! document, select Math box⿶ and define eq1: $=3 x+y=5$. In the next math box, define eq2: $=4 x-y=2$. In the next math box, select Math $>$ Algebra \downarrow Solve and type eq1,y) to solve eq1 for y. Have students compare this answer to their written work. Students should define y to be the expression for y.
4. Students should use the solve command again to solve eq2 for x. Have them compare this answer to their written answer. In the next math box, students should define x to be the result that they obtained when they solved for x.
5. Using the next math box, students should type y to have the value of y for the solution to this system of equations. Have the students compare this answer to their written answer.
6. This solution should be the (x, y) point of intersection in the graph of two lines. Students should type $3 x+y$ and $4 x-y$ in math boxes to verify their solutions.

This activity has students solve systems of equations that can't be verified graphically in the $x y$ plane. Solutions to the systems of equations in the student activity can be verified using matrices. To solve the system in the pre-activity using matrices:

1. On the Math Palette, select Matrix [:::] and choose a 2 x 2 matrix.
2. Enter the coefficients as shown below.
3. Select Inverse X^{-1} from the Math Palette and multiply the inverse of the coefficient matrix by a $2 x 1$ matrix of the constants.
$\left[\begin{array}{cc}3 & 1 \\ 4 & -1\end{array}\right]^{-1} *\left[\begin{array}{l}5 \\ 2\end{array}\right]$

Exploration

3. $\mathrm{z}:=-3 \mathrm{x}+2 \mathrm{y}+6$
4. $\mathrm{y}:=\frac{11 \mathrm{x}-23}{5}$
5. $\mathrm{x}:=3$
6. $\mathrm{y}:=2$
7. $\mathrm{z}:=1$
8. 6
9. 5
10. 9
11. The solution to this system is $\{3,2,1\}$. The answers to questions $8-10$ verify the solution to this system since the left side of each equation has the same value as the corresponding right sides when $x=3, y=2$, and $z=1$.

Additional Exercises

1. The process may vary with each student. One process could be:

Process

Solution

$z:=2 x+5 y+8$
$\mathrm{x}:=4$
$\mathrm{y}:=\frac{-(7 \mathrm{x}+44)}{24}$
$\mathrm{y}:=-3$
$\mathrm{x}:=4$

$$
\mathrm{z}:=1
$$

2. The process may vary with each student. One process could be:

Process

$\mathrm{x}:=2 \mathrm{y}+3 \mathrm{z}-1$
$\mathrm{x}:=-2$
$\mathrm{y}:=\frac{-(11 \mathrm{z}+5)}{7}$
$\mathrm{z}:=-3$
$y:=4$
$\mathrm{z}:=-3$
3. The process may vary with each student. One process could be:

Process

$y:=-3 x-5 z-2$

Solution

$\mathrm{x}:=-1$
$\mathrm{z}:=\frac{-(\mathrm{x}+1)}{9}$
$\mathrm{x}:=-1$
$\mathrm{z}:=0$
4. The process may vary with each student. One process could be:

Process

$y:=6 z-5$
$\mathrm{x}:=\frac{3(14 \mathrm{z}-15)}{4}$
$\mathrm{z}:=\frac{1}{2}$

Solution

$\mathrm{x}:=6$
$\mathrm{y}:=-2$
$\mathrm{z}:=\frac{1}{2}$
5. The process may vary with each student. One process could be:

Process

$\mathrm{z}=\frac{\mathrm{x}+2(2 \mathrm{y}-5)}{2}$
$y=\frac{5 x-26}{10}$
$x=\frac{334}{25}$

Solution

$$
\mathrm{x}:=\frac{334}{25}
$$

$$
\mathrm{y}:=\frac{102}{25}
$$

$$
\mathrm{z}:=\frac{246}{25}
$$

6. The process may vary with each student. One process could be:

Process

$$
\begin{aligned}
& \mathrm{z}=-\mathrm{x}+\mathrm{y}+12 \\
& \mathrm{y}=\frac{-2(2 \mathrm{x}+21)}{3} \\
& \mathrm{x}=0
\end{aligned}
$$

Solution

$$
\mathrm{x}:=0
$$

$$
\mathrm{y}:=-14
$$

$$
\mathrm{z}:=-2
$$

