Teacher Notes

Activity 4

Objective

 Students will develop an understanding of solving a system of equation using the method of substitution.

Applicable TI InterActive! Functions

- Solve solve(*equation*, *variable*)
- Define *function_name* := *function*

Solving Systems of Equations: The Method of Substitution

Problem

There are several methods that can be used to solve a system of equations. Students will employ the method of substitution to solve systems of equations.

Pre-Activity

Solve the system 3x + y = 54x - y = 2 by using the substitution method and verify graphically.

- 1. Let eq1 be 3x + y = 5 and eq2 be 4x y = 2.
- 2. Using paper and pencil, have the students solve eq1 for *y* in terms of *x*. Then have them substitute this expression in eq2 for *y* and solve for *x*. And finally, have students substitute the *x*-value into eq1 and solve for *y*.
- 3. Students should open a new TI InterActive! document, select Math box and define eq1: = 3x + y = 5. In the next math box, define eq2: = 4x y = 2. In the next math box, select Math►Algebra►Solve and type eq1,y) to solve eq1 for *y*. Have students compare this answer to their written work. Students should define *y* to be the expression for *y*.
- 4. Students should use the **solve** command again to solve eq2 for *x*. Have them compare this answer to their written answer. In the next math box, students should define *x* to be the result that they obtained when they solved for *x*.

- 5. Using the next math box, students should type **y** to have the value of *y* for the solution to this system of equations. Have the students compare this answer to their written answer.
- This solution should be the (*x*,*y*) point of intersection in the graph of two lines. Students should type 3x + y and 4x y in math boxes to verify their solutions.

This activity has students solve systems of equations that can't be verified graphically in the *xy* plane. Solutions to the systems of equations in the student activity can be verified using matrices. To solve the system in the pre-activity using matrices:

- 1. On the Math Palette, select Matrix **1** and choose a 2x2 matrix.
- 2. Enter the coefficients as shown below.
- 3. Select Inverse from the Math Palette and multiply the inverse of the coefficient matrix by a 2x1 matrix of the constants.

$$\begin{bmatrix} 3 & 1 \\ 4 & -1 \end{bmatrix}^{-1} * \begin{bmatrix} 5 \\ 2 \end{bmatrix}$$

Exploration

- 3. z: = -3x + 2y + 6
- 4. $y := \frac{11 \text{ x} 23}{5}$
- 5. x := 3
- 6. y:=2
- 7. z: = 1
- 8. 6
- 9. 5
- 10. 9
- 11. The solution to this system is $\{3, 2, 1\}$. The answers to questions 8-10 verify the solution to this system since the left side of each equation has the same value as the corresponding right sides when x = 3, y = 2, and z = 1.

Additional Exercises

1. The process may vary with each student. One process could be:

Process	Solution
$\mathbf{z} = 2\mathbf{x} + 5\mathbf{y} + 8$	x: = 4
$y:=\frac{-(7x+44)}{24}$	y: = -3
x: = 4	z: = 1

2. The process may vary with each student. One process could be:

Process	Solution
$\mathbf{x} := 2\mathbf{y} + 3\mathbf{z} - 1$	x:=-2
$\mathbf{y} \colon = \frac{-(11\mathbf{z} + 5)}{7}$	y:=4
z: = -3	z : = -3

3. The process may vary with each student. One process could be:

Process	Solution
y := -3x - 5z - 2	x:=-1
$z := \frac{-(x+1)}{9}$	y: = 1
x: = -1	z : = 0

4. The process may vary with each student. One process could be:

Process	Solution
y: = 6z - 5	x: = 6
$x := \frac{3(14z - 15)}{4}$	y: = - 2
$\mathbf{z} := \frac{1}{2}$	$\mathbf{z} := \frac{1}{2}$

5. The process may vary with each student. One process could be:

Process	Solution
$z = \frac{x + 2(2y - 5)}{2}$	$x:=\frac{334}{25}$
$y = \frac{5x - 26}{10}$	$y: = \frac{102}{25}$
$\mathbf{x} = \frac{334}{25}$	$z:=\frac{246}{25}$

6. The process may vary with each student. One process could be:

Process	Solution
$\mathbf{z} = -\mathbf{x} + \mathbf{y} + 12$	x: = 0
$y = \frac{-2(2x + 21)}{3}$	y: = -14
$\mathbf{x} = 0$	z: = -2