One-Sided Limits and Continuity with Piece-Wise Defined Functions

Name \qquad
Period \qquad

Graph the following piece-wise defined functions. Then determine the left and right limits at the indicated values. Also determine if the function is continuous at the indicated value(s). If not, state why.

1. $f(x)= \begin{cases}x, x \leq 0 & \lim _{x \rightarrow 0^{-}} f(x)= \\ x^{2}, x>0 & \lim _{x \rightarrow 0^{+}} f(x)=\end{cases}$

$$
\lim _{x \rightarrow 0} f(x)=
$$

Is $f(x)$ continuous at $x=0$? Why or why not?
2. $f(x)=\left\{\begin{array}{cc}x-3, x \leq 1 & \lim _{x \rightarrow 1^{-}} f(x)= \\ -x, x>1 & \lim _{x \rightarrow+^{+}} f(x)= \\ & \lim _{x \rightarrow 1} f(x)=\end{array}\right.$

Is $f(x)$ continuous at $x=1$? Why or why not?
3. $f(x)=\left\{\begin{array}{cc}x^{3}+1, x \leq 0 & \lim _{x \rightarrow 0^{-}} f(x)= \\ e^{x}, x>0 & \lim _{x \rightarrow 0^{+}} f(x)=\end{array}\right.$

$$
\lim _{x \rightarrow 0} f(x)=
$$

Is $f(x)$ continuous at $x=1$? Why or why not?
4. $f(x)=\left\{\begin{array}{cc}|x|, x \leq 3 & \lim _{x \rightarrow 3^{-}} f(x)= \\ \cos x, x>3 & \lim _{x \rightarrow 3^{+}} f(x)=\end{array}\right.$

$$
\lim _{x \rightarrow 3} f(x)=
$$

Is $f(x)$ continuous at $x=1$? Why or why not?
5. $f(x)=\left\{\begin{array}{cl}x^{2}, x \leq 1 & \lim _{x \rightarrow 1^{-}} f(x)= \\ 1,1<x \leq 3 \\ x-2, x>3 & \lim _{x \rightarrow 1^{+}} f(x)= \\ \lim _{x \rightarrow 1} f(x)=\end{array}\right.$

Is $f(x)$ continuous at $x=1$? Why or why not?

