Open the TI-Nspire document Critical_Points.tns.

A function \boldsymbol{f} has a critical point at c if

- the value c is in the domain of the function f (in other words, $f(c)$ is defined) and
- either $\mathbf{f}^{\prime}(c)=0$ or $\mathbf{f}^{\prime}(c)$ is undefined.

A function has a local maximum at c if $\mathbf{f}(c) \geq \mathbf{f}(x)$ when x is near c (that is, if $\mathbf{f}(c) \geq \mathbf{f}(x)$ for all x in some open interval containing c). Similarly, \mathbf{f} has a local minimum at c if $\mathbf{f}(c) \leq \mathbf{f}(x)$ when x is near c (if $\mathbf{f}(c) \leq \mathbf{f}(x)$ for all x in some open interval containing c).

In this activity, you will see several different examples of critical points and local extrema (maxima or minima).

| 1.1 | 1.2 | 2.1 |
| :--- | :--- | :--- | :--- |
| Critical Points and Local Extical_Points ∇ | | |

Move to page 1.2.

Press ctrl and ctri \langle to navigate through the lesson.

1. The graph of the differentiable function shown in the left window has a box centered around the point $(1,2)$. You can use the up/down arrows at the top of the screen (or drag the point on the line segment) to see a "zoomed in" view of this boxed area of the graph in the right window.
a. This function has a local minimum at $x=1$. Using the graph and the definition of local minimum above, explain why.
b. What appears to happen to the graph as you zoom in on the point $(1,2)$?
c. What is $\mathbf{f}^{\prime}(1)$? Explain your answer. Why is $c=1$ a critical point of \boldsymbol{f} ?

Move to page 2.1.

2. This is the graph of a function having a local maximum at $x=-2$.
a. What appears to happen to the graph as you zoom in on the point $(-2,1)$?
b. What is the value of $\mathbf{f}^{\prime}(-2)$? Explain your answer. Why is $c=-2$ a critical point of \mathbf{f} ?
c. What value could the derivative of a function have at the location of a local maximum or minimum? Explain your answer.

Move to page 3.1.

3. This is the graph of a function having a local minimum at $x=-1$.
a. What happens to the graph as you zoom in on the point $(-1,-2)$?
b. Assuming this behavior persists no matter how far you zoom in, is this function differentiable at $x=-1$? Why or why not?

Move to page 4.1.

4. This is the graph of a function having a local maximum at $x=2$.
a. What happens to the graph as you zoom in on the point $(2,-1) ?$
b. Assuming this behavior persists no matter how far you zoom in, is this function differentiable at $x=2$? Why or why not?
c. Do these examples support your answer to question 2c? If so, explain why. If not, how might you modify your previous answer?
d. Could a function have a local maximum or minimum at a non-critical point? Why or why not?

Move to page 5.1.

5. The graph of this increasing function has a horizontal tangent at the point $x=2$.
a. Is $x=2$ a critical point? Why or why not?
b. Does \mathbf{f} have either a local minimum or local maximum at $x=2$?

Move to page 6.1.

6. The graph of this increasing function has a vertical tangent at the point $x=-2$.
a. Is $x=-2$ a critical point? Why or why not?
b. Does \mathbf{f} have either a local minimum or local maximum at $x=-2$?
c. Does this contradict the statement you made in question 3d? Explain why or why not.
