\qquad

Part 1 - Graphical Limit

1. Open up a new TI-Nspire document and insert a Graphs page.
2. Graph the function $f(x)=\frac{\sin (x)}{x}$ by typing $\sin (x) / x$ in the function entry line at the bottom of the screen and press enter).
3. Zoom in where x is indeterminate. Press MENU > Window/Zoom > Window Settings and change the XMin, XMax, YMin, and YMax values.
4. Place a point on the function. Press MENU > Points \& Lines > Point On. Move the cursor to the graph and press enter.
5. Grab the point and move it toward $x=0$.

- What does the y-value equal as you move the point from the right toward $x=0$?
- What does the y-value equal as you move the point from the left toward $x=0$?
- Are the y-values the same or different?

Part 2 - Numerical Limit

1. Insert a Lists \& Spreadsheet page.
2. Set up automatic data capture. In gray cell of Column A, type =capture(rightlim,1) and press enter. In the gray cell of Column B, type =capture(leftlim,1) and press enter.
3. Go back to the Graphs page. Place a second point on the function. One point needs to be to the right of the y-axis and the other to the left of the y-axis.
4. Link the variable names. On the y-value of the right point, click once. Press var, select Store Var, and type rightlim. Repeat for the left y-value using leftlim.
5. Grab the right point and move it toward $x=0$. Then grab the left point and move it toward $x=0$. Do not cross the y-axis!
6. The values of the function will be captured on the spreadsheet. Scroll down the columns to see the y-values as the x-value approaches zero from the left and right side.

- What do the values in Column A approach?
- What do the values in Column B approach?
- Are the y-values the same or different?
- What is the $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$?

Liz Limit of $\operatorname{Sin}(x) / x$

Part 3 - Algebraic Limit

1. Insert a Calculator page.
2. Press (10\&8) and select the limit template. Enter the information as shown below. Using a minus sign will calculate the left-hand limit. Change the minus to a plus to calculate the right-hand limit.

- $\lim _{x \rightarrow 0^{-}} \frac{\sin (x)}{x}=$
- $\lim _{x \rightarrow 0^{+}} \frac{\sin (x)}{x}=$

3. When the left-hand limit equals the right-hand limit, the limit exists. Complete the limit template without a minus or plus sign to determine the limit.

- $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=$

Practice Problems

Use the graph, spreadsheet, and calculator pages to determine the limit of the following problems.

1. $\lim _{x \rightarrow 1} \frac{x-1}{x^{3}-1}$
2. $\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x^{2}}$
3. $\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}$
