7-1
 Areas of Parallelograms and Triangles

Lesson Preview

What You'll Learn

To find the area of a parallelogram
To find the area of a triangle
... And Why
To find the force of wind against the side of a building, as in Example 5

Check Skills You'll Need

(For help, go to Lesson 1-7.)
Find the area of each figure.

1. $25 \mathrm{~cm}^{2}$
2. 28 in. 2
3. $\frac{3}{2} \mathrm{ft}^{2}$
4. a square with $5-\mathrm{cm}$ sides
5. a rectangle with base 4 in . and height 7 in .
6. a $4.6 \mathrm{~m}-$ by -2.5 m rectangle
7. a rectangle with length 3 ft and width $\frac{1}{2} \mathrm{ft}$

Each rectangle is divided into two congruent triangles. Find the area of
each triangle.
5.

6 units 2
6.

New Vocabulary • base of a parallelogram • altitude of a parallelogram - height of a parallelogram - base of a triangle - height of a triangle

Interactive lesson includes instant self-check, tutorials, and activities.

Investigation: Area of a Parallelogram

- Cut a rectangle out of centimeter grid paper by cutting along grid lines.
- Record the base, height, and area of the rectangle.
- Cut a right triangle from one end of the rectangle. Tape the triangle to the opposite end to form a parallelogram as shown below.
- Compare the original rectangle with the parallelogram formed. List the ways the rectangle and the parallelogram are the same and the ways they are different. See left.

The picture on page 348 shows that a parallelogram with the same base and height as a rectangle has the same area as the rectangle.

Key Concepts

Theorem 7-1 Area of a Rectangle

The area of a rectangle is the product of its base and height.

$$
A=b h
$$

Theorem 7-2 Area of a Parallelogram
The area of a parallelogram is the product of a base and the corresponding height.

$$
A=b h
$$

Reading Math

The term base is used to represent both a segment and its length.

A base of a parallelogram is any of its sides. The corresponding altitude is a segment perpendicular to the line containing that base drawn from the side opposite the base. The height is the length of an altitude.

1) x ablple Finding the Area of a Parallelogram

Find the area of each parallelogram.
a.

b.

You are given each height. Choose the corresponding side to use as the base.

$$
\begin{array}{cc}
\begin{aligned}
A=b h \\
=5(4)=20
\end{aligned} & \text { 世Substitute. } \rightarrow
\end{array} \begin{gathered}
A=b h \\
\\
\text { The area is } 20 \mathrm{in.}^{2} .
\end{gathered} \quad \begin{gathered}
\text { The area is } 7 \mathrm{~cm}^{2} .
\end{gathered}
$$

Check Understanding 1 Find the area of a parallelogram with base 12 m and height $9 \mathrm{~m} .108 \mathrm{~m}^{2}$

2 EXADPLE Finding Area in the Coordinate Plane

Find the area of $\square P Q R S$ with vertices $P(1,2), Q(6,2), R(8,5)$, and $S(3,5)$.
Graph $\square P Q R S$. If you choose $\overline{P Q}$ as the base, then the height is 3 .

$$
\begin{aligned}
b & =P Q=5 \\
h & =3 \\
A & =b h=5(3) \\
& =15
\end{aligned}
$$

The area of $\square P Q R S$ is 15 square units.

Find the area of $\square E F G H$ with vertices $E(-4,3), F(0,3), G(1,-2)$, and $H(-3,-2)$. 20 units 2

3 EXANPLE Finding a Missing Dimension

For $\square A B C D$, find $C F$ to the nearest tenth.
First, find the area of $\square A B C D$. Then use the area formula a second time to find $C F$.

$$
\begin{aligned}
A & =b h \\
& =10(12)=120 \quad \text { Use base } A B \text { and height } D E .
\end{aligned}
$$

The area of $\square A B C D$ is $120 \mathrm{in.}^{2}$.

$$
\begin{aligned}
& A=b h \\
& 120=13(C F) \quad \text { Use base } A D \text { and height } C F . \\
& C F=\frac{120}{13} \approx 9.2 \\
& C F \text { is about } 9.2 \mathrm{in.}
\end{aligned}
$$

Check Understanding (3) A parallelogram has sides 15 cm and 18 cm . The height corresponding to a $15-\mathrm{cm}$ base is 9 cm . Find the height corresponding to an $18-\mathrm{cm}$ base. 7.5 cm

objective
 Area of a Triangle

A diagonal divides any parallelogram into two congruent triangles.

Therefore, the area of each triangle is half the area of the parallelogram.

Theorem 7-3 Area of a Triangle

The area of a triangle is half the product of a base and the corresponding height.

$$
A=\frac{1}{2} b h
$$

A base of a triangle is any of its sides. The corresponding height is the length of the altitude to the line containing that base.

4 Exajple Finding the Area of a Triangle

Find the area of the shaded triangle at the left.

$$
\begin{aligned}
A & =\frac{1}{2} b h \\
& =\frac{1}{2}(10)(6.4)=32 \quad \text { Substitute and simplify. }
\end{aligned}
$$

The area of the shaded triangle is $32 \mathrm{ft}^{2}$.
$\$$ Check Undersłanding
Find the area of the triangle at the right. $30 \mathrm{~cm}^{2}$

5 ExADUPLE Real-World Connection

Real-World Connection
In 1992 this building in Homestead, Florida, succumbed to the $145 \mathrm{mi} / \mathrm{h}$ winds of Hurricane Andrew.

Structural Design When designing a building, you must be sure that the building can withstand hurricane-force winds, which have a velocity of $73 \mathrm{mi} / \mathrm{h}$ or more. The formula $F=0.004 A v^{2}$ gives the force F in pounds exerted by a wind blowing against a flat surface. A is the area of the surface in square feet, and v is the wind velocity in miles per hour.
How much force is exerted by a $73 \mathrm{mi} / \mathrm{h}$ wind blowing directly against the side of the building shown here?

Find the area of the side of the building.
triangle area $=\frac{1}{2} b h=\frac{1}{2}(20) 6=60 \mathrm{ft}^{2}$
rectangle area $=b h=20(12)=240 \mathrm{ft}^{2}$

area of the side $=60+240=300 \mathrm{ft}^{2}$
Use the area of the side of the building and the velocity of the wind to find the force.

$$
\begin{aligned}
F & =0.004 A v^{2} & & \text { Use the formula for force. } \\
& =0.004(300)(73)^{2} & & \text { Substitute } 300 \text { for } A \text { and } 73 \text { for } v . \\
& =6394.8 & &
\end{aligned}
$$

The force is about 6400 lb , or 3.2 tons.
Critical Thinking Suppose the bases of the rectangle and triangle in the building above are doubled to 40 ft , but the height of each figure remains the same. How is the force of the wind against the side of the building affected? The force is doubled.

EXERCISES

Practice and Problem Solving

(A)
 Practice by Example

Example 1
(page 349)

Find the area of each parallelogram.

Example 2 (page 349)
4. 20 units 2
5.9 units 2

Example 3
(page 350)
Coordinate Geometry Find the area of the parallelogram with the given vertices.
4. $A(2,0), B(7,0), C(8,4), D(3,4)$
5. $E(-4,0), F(-1,0), G(1,-3), H(-2,-3)$
6. $I(2,2), J(4,2), K(2,-3), L(0,-3)$ 10 units 2
7. $M(-6,-1), N(-5,0), P(1,0), Q(0,-1)$ 6 units 2

Find the value of \boldsymbol{h} for each parallelogram.

10.

Lesson 7-1 Areas of Parallelograms and Triangles

