Teacher Notes

Activity 11

Exploring Polar Equations

Objective

- The student will explore the polar equation defined by $r(\theta)=a+b \cos (n \theta)$ and $r(\theta)=a+b \sin (n \theta)$ and examine the effects that the parameters a, b, and n have on the graphs.

Applicable TI InterActive! Functions

- Graph
- Define

Problem

By changing the values of a, b, and n in the polar equations $r(\theta)=a+b \cos (n \theta)$ and $r(\theta)=a+b \sin (n \theta)$ different polar curves, such as a circle, rose, limaçon, and cardiod can be created. In this activity, students will create the different curves and discover how the parameters a, b and n create the different curves.

1. through 7.

2. $a=0 \quad n=1$
3. It increases the radius of the circle.
4. If the value of b is negative, the circle is reflected about the y-axis.

Rose Polar Curve Exploration

1. through 5.

Note: This is the graph of
$r(\theta)=4 \cos (4 \theta)$

Rose Polar Curve Analysis

1. $a=0$
$b=4$
2. A. 1
B. 4
C. 3
D. 8
3. If n is odd, it equals the number of leaves. If it is even, then the number of leaves is twice n.
4. The value of b increases the length of each leave.
5. If the value of b is negative, the rose is reflected about the y-axis.

Limaçon Curve Exploration

1. through 5.

Note: This is the graph of $r(\theta)=2-5 \cos (\theta)$

Limaçon Curve Analysis

1. $n=1$
2. The absolute value of b is always greater than the absolute value of a.
3. The greater their sum, the bigger the outer loop.
4. If the value of b is negative, the limaçon is reflected about the y-axis.

Cardiod Curve Exploration

1. through 5.

Cardiod Curve Analysis

1. $n=1$
2. The absolute values of a and b are equal.
3. The greater their sum, the bigger the loop.
4. If the value of b is negative, the cardiod is reflected about the y-axis.

Additional Exercises Notes and Solutions

For the additional exercises, students should change the Mode settings to Polar. The values a, b and n should be defined in a math box prior to defining $r(\theta):=a+b \sin (n \theta)$. By clicking on each math box, the parameters can be changed and the effects observed.

1. The graph is a circle with a radius of 2 and lies along the positive y-axis.
2. The graph is a circle with a radius of 4 and lies along the positive y-axis.
3. The graph is a circle with a radius of 6 and lies along the negative y-axis.
4. The graph is a rose with 4 leaves of length 2.
5. The graph is a rose with 3 leaves of length 2 .
6. The graph is a rose with 8 leaves of length 3 that is reflected about the y-axis.
7. The graph is a limaçon that lies along the positive y-axis.
8. The graph is a cardiod that lies along the positive y-axis.
9. The graph is a limaçon that lies along the negative y-axis.
10. The graph is a limaçon that lies along the negative y-axis.
11. The polar curve $r(\theta)=a+b \cos (n \theta)$ lies along the x-axis and the curve $r(\theta)=a+b \sin (n \theta)$ lies along the y-axis.
12. A circle is created when $a=0$ and $n=1$. A rose is created when $a=0$ and the value of n is greater than 1 . A limaçon is created when the absolute value of b is greater than the absolute value of a. A cardiod is created when the absolute value of b is equal to the absolute value of a.
