TEXAS INSTRUMENTS

ALGEBRA II ACTIVITY 7: POPULATION GROWTH WITH "CALCUMITES" Tlalgebra.com

 ACTIVITY OVERVIEW: In this activity we will Enter data about the ideal population growth of "calcumites" Set up a scatter plot and use regression to fit the data with an exponential model Enter data about the limited population growth of "calcumites" Set up a scatter plot and use regression to fit the data with a logistics model 	This is a pair of	of calcumites.
Calcumites are little creatures that threaten to take over the world. They come in pairs. Each pair mates after they are one year old. They mate once a year. Each year they produce one male/female pair. They never die.	Year	Number of Pairs
	1	1
	2	1
	3	2
The table change the number of acting of coloursities	4	3
The table shows the number of pairs of calcumites	5	5
continue?	6	8
Press <u>STAT ENTER</u> . Type in the years 1-10 in L1 and the number of pairs of calcumites in L2 .	L1 L2 5 5 6 8 7 13 8 21 9 34 10 55 L2(11) =	L3 2
Press WINDOW. Set the window as shown.	WINDOW Xmin=0 Xmax=11 Xscl=1 Ymin=0 Ymax=60 Yscl=5 Xres=1	

Press 2nd[Y= to prepare to set up a plot. Press ENTER or 1 to access Plot 1 .	317112005 ■Plot10ff
Press ENTER to turn the plot On . Use the defaults for the remaining choices.	Mark: Division (1997)
Press GRAPH. Examine the plot.	
Press TRACE. Pick two points and calculate the slope between them. Pick another pair of points and calculate the slope. Do the slopes lead you to think a linear model will be appropriate for this data? What model might be appropriate?	P1:L1,L2 0 0 0 0 0 0 0 0 0
Press STAT > to access the CALC menu. Select ExpReg by pressing 0 or by moving the cursor to it and pressing ENTER. This will paste the command on the home screen.	EDIT DEID TESTS 41LinRe9(ax+b) 5:QuadRe9 6:CubicRe9 7:QuartRe9 8:LinRe9(a+bx) 9:LnRe9 2: ExpRe9
To instruct the calculator to run the regression on L1 and L2 and to put the resulting equation into Y ₁ , press 2nd 1, 2nd 2, VARS ▶ 1 1.	ExpReg L1,L2,Y1

Press ENTER to execute.	ExpRe9 y=a*b^x a=.4882960783 b=1.598311821 ■
Press GRAPH).	
Press WINDOW. Set the window as shown. This will allow examination of what happens over the first 20 years.	WINDOW Xmin=0 Xmax=21 Xscl=1 Ymin=0 Ymax=7000 Yscl=500 Xres=1
Press GRAPH. What is happening to the population?	
Press TRACE. Press A to trace Y1 instead of Plot 1.	Y1=.48829607834354*1.59_ X=0Y=.48829608 .
Type 20 to instruct the calculator to jump to the point where $x = 20$.	Y1=.48829607834354*1.59_

Press <u>STAT</u> to access the CALC menu. Select Logistic by pressing <u>ALPHA APPS</u> (to access the letter "B") or by moving the cursor to it and pressing <u>ENTER</u> . This will paste the command on the home screen.	EDIT Dile TESTS 6†CubicRe9 7:QuartRe9 8:LinRe9(a+bx) 9:LnRe9 0:ExpRe9 A:PwrRe9 3: Lo9istic
To instruct the calculator to run the regression on L1 and L2 and to put the resulting equation into Y_2 , press 2nd 1, 2nd 2, VARS > 12.	9=a*b^x a=.4882960783 b=1.598311821 Lo9istic L1,L2,Y 2∎
Press ENTER to execute.	Lo9istic 9=c/(1+ae^(-bx)) a=61.62551145 b=.7667883962 c=12.5766262
Press GRAPH. How do you think the population growth will continue past 10 years? Why do you think the population growth slows down before it levels off instead of just ascending quickly and suddenly leveling off?	
Press <u>WINDOW</u> . Set the window as shown. This will allow examination of what happens over the first 20 years.	WINDOW Xmin=0 Xmax=22 Xscl=1 Ymin=0 Ymax=100 Yscl=20 Xres=1

Press <u>GRAPH</u>. Describe the difference between the *ideal* growth (growth without limitations) and the *limited* growth.

Press TRACE. Press \frown to trace **Y2** instead of **Plot 1**. Type 20 to instruct the calculator to jump to the point where x = 20. Press ENTER to execute. The maximum that a population can achieve with limitations is called its *carrying capacity*. What is the *carrying capacity* for this population?