Thursday Night PreCalculus, November 30, 2023

Difference Quotients and Average Rates of Change

A Few Geometric Interpretations

Average rate of change: the change in y divided by the change in x.

Ave Rate of Change $=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{f(b)-f(a)}{b-a}$

Difference Quotient: A measure of the average rate of change of a function over an interval of length h.

$\mathrm{DQ}=\frac{f(a+h)-f(a)}{(a+h)-a}=\frac{f(a+h)-f(a)}{h}$
$\mathrm{DQ}=\frac{f(x+h)-f(x)}{h}$

Another perspective:

$$
\mathrm{DQ}=\frac{f(x)-f(a)}{x-a}
$$

Problems

1. For each of the following functions, simplify the expression

$$
\frac{f(x+h)-f(x)}{h}, \quad h \neq 0
$$

as far as possible.
(a) $f(x)=3 x^{2}-5 x$

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{3(x+h)^{2}-5(x+h)-\left(3 x^{2}-5 x\right)}{h} \\
& =\frac{3\left(x^{2}+2 x h+h^{2}\right)-5 x-5 h-3 x^{2}+5 x}{h} \\
& =\frac{3 x^{2}+6 x h+3 h^{2}-5 x-5 h-3 x^{2}+5 x}{h} \\
& =\frac{6 x h+3 h^{2}-5 h}{h}=\frac{h(6 x+3 h-5)}{h} \\
& =6 x+3 h-5
\end{aligned}
$$

Note: What is the average rate of change for consecutive equal-length intervals?

Interval	Difference Quotient
$[a, a+h]$	$6 a+3 h-5$
$[a+h, a+2 h]$	$6 a+9 h-5$
$[a+2 h, a+3 h]$	$6 a+15 h-5$

(b) $f(x)=\sqrt{x^{2}-1}$

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{\sqrt{(x+h)^{2}-1}-\sqrt{x^{2}-1}}{h} \cdot \frac{\sqrt{(x+h)^{2}-1}+\sqrt{x^{2}-1}}{\sqrt{(x+h)^{2}-1}+\sqrt{x^{2}-1}} \\
& =\frac{(x+h)^{2}-1-\left(x^{2}-1\right)}{h\left(\sqrt{(x+h)^{2}-1}+\sqrt{x^{2}-1}\right)} \\
& =\frac{x^{2}+2 x h+h^{2}-1-x^{2}+1}{h\left(\sqrt{(x+h)^{2}-1}+\sqrt{x^{2}-1}\right)} \\
& =\frac{h(2 x+h)}{h\left(\sqrt{(x+h)^{2}-1}+\sqrt{x^{2}-1}\right)} \\
& =\frac{2 x+h}{\sqrt{(x+h)^{2}-1}+\sqrt{x^{2}-1}}
\end{aligned}
$$

(c) $f(x)=\frac{1}{x^{2}}$

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{\frac{1}{(x+h)^{2}}-\frac{1}{x^{2}}}{h} \\
& =\frac{\frac{x^{2}-(x+h)^{2}}{x^{2}(x+h)^{2}}}{h}=\frac{\frac{x^{2}-\left(x^{2}+2 x h+h^{2}\right)}{x^{2}(x+h)^{2}}}{h} \\
& =\frac{-2 x h-h^{2}}{h x^{2}(x+h)^{2}}=\frac{h(-2 x-h)}{h x^{2}(x+h)^{2}} \\
& =\frac{-2 x-h}{x^{2}(x+h)^{2}}
\end{aligned}
$$

(d) $f(x)=\frac{x}{1+x^{2}}$

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{\frac{x+h}{1+(x+h)^{2}}-\frac{x}{1+x^{2}}}{h} \\
& =\frac{\frac{(x+h)\left(1+x^{2}\right)-x\left(1+(x+h)^{2}\right)}{\left(1+(x+h)^{2}\right)\left(1+x^{2}\right)}}{h} \\
& =\frac{x+x^{3}+h+h x^{2}-x-x^{3}-2 x^{2} h-x h^{2}}{h\left(1+(x+h)^{2}\right)\left(1+x^{2}\right)} \\
& =\frac{-x^{2} h-x h^{2}+h}{h\left(1+(x+h)^{2}\right)\left(1+x^{2}\right)} \\
& =\frac{h\left(-x^{2}-x h+1\right)}{h\left(1+(x+h)^{2}\right)\left(1+x^{2}\right)} \\
& =\frac{-x^{2}-x h+1}{\left(1+(x+h)^{2}\right)\left(1+x^{2}\right)}
\end{aligned}
$$

2. The number of pounds (in millions) of lobster caught by Maine commercial fisherman is given by $P(t)$, where t is measured in years. Selected values for $P(t)$ are given in the table.

t	2010	2012	2014	2016	2018	2020	2022
$P(t)$	255.8	318.3	306.9	302.9	285.8	205.1	107.1

Find the average rate of change in pounds of lobsters caught (i) from 2016 to 2018; (ii) from 2018 to 2020.

Indicate the unites of measure. What does your answers suggest about the change in the number of pounds of lobster caught in recent years?

AROC $=\frac{P(2018)-P(2016)}{2018-2016}=\frac{285.8-302.9}{2}=\frac{-17.1}{2}=-8.55 \mathrm{mil}$ pounds $/ \mathrm{year}$

AROC $=\frac{P(2020)-P(2018)}{2020-2018}=\frac{205.1-285.8}{2}=\frac{-80.7}{2}=-40.35 \mathrm{mil}$ pounds $/ \mathrm{year}$

The number of pounds of lobsters caught per year is decreasing at a faster rate.
3. A particle moves along a horizontal number line. Its position at time $t \geq 0$ is given by $s(t)=t^{2}-7 t+2$ where t is measured in seconds and s is measured in meters.
(a) Find the average rate of change in the particle's position from $t=0$ to $t=8$ seconds.

$$
\frac{s(8)-s(0)}{8-0}=\frac{\left(8^{2}-7 \cdot 8+2\right)-(2)}{8-0}=\frac{8}{8}=1 \mathrm{~meters} / \mathrm{sec}
$$

(b) Use your answer in part (a) to determine if the particle is to the left or the right of its initial position at time $t=8$.

Since the average rate of change is $1(>0) \mathrm{m} / \mathrm{sec}$, the particle is to the right of its initial position at time $t=8$.
4. The figure shows the graph of the altitude of a plane (h, in feet) from takeoff, $t=0$ minutes, to $t=45$ minutes.

Use the graph to determine on which five-minute interval, $0-5,5-10,10-15$, etc, the average rate of change in height is greatest.
5. For each of the following functions, simplify the expression

$$
\frac{f(x+h)-f(x-h)}{2 h}
$$

(a) $f(x)=2 x+5$

$$
\begin{aligned}
\frac{f(x+h)-f(x-h)}{2 h} & =\frac{2(x+h)+5-(2(x-h)+5)}{2 h} \\
& =\frac{2 x+2 h+5-2 x+2 h-5}{2 h} \\
& =\frac{4 h}{2 h}=2
\end{aligned}
$$

(b) $f(x)=x^{2}+3 x+4$

$$
\begin{aligned}
\frac{f(x+h)-f(x-h)}{2 h} & =\frac{(x+h)^{2}+3(x+h)+4-\left((x-h)^{2}+3(x-h)+4\right)}{2 h} \\
& =\frac{x^{2}+2 x h+h^{2}+3 x+3 h+4-\left(x^{2}-2 x h+h^{2}+3 x-3 h+4\right)}{2 h} \\
& =\frac{4 x h+6 h}{2 h} \\
& =\frac{2 h(2 x+3)}{2 h}=2 x+3
\end{aligned}
$$

Overtime Problems

1. Use technology to sketch the graph of $y=\log _{1 / 2}(4-x)$

41.1 1.2 1.3 * *npc_11_30	RAD \times
$f(x):=\log \frac{1}{2}(4-x)$	Done

2. The value, in millions of dollars, for sales of luxury tile flooring from a distributor is modeled by the function F. The value is expected to increase by 3.2% each quarter of a year. At time $t=0,37$ million dollars of sales were processed. If t is measure in years, write an equation for $F(t)$.

Total amount after interest is compounded n times per year:
$A=P_{0}\left(1+\frac{r}{n}\right)^{n t}$
$A=$ Accumulated amount
$P_{0}=$ Original investment amount
$r=$ Interest rate (in decimal form, yearly)
$t=$ Time (years)
$n=$ Number of times interest is compounded in a year
$A=37(1+0.032)^{4 t}=37(1.032)^{4 t}$

