Thursday Night PreCalculus, November 30, 2023

Difference Quotients and Average Rates of Change

A Few Geometric Interpretations

Average rate of change: the change in y divided by the change in x.

Ave Rate of Change
$$= \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{f(b) - f(a)}{b - a}$$

Difference Quotient: A measure of the average rate of change of a function over an interval of length h.

$$DQ = \frac{f(a+h) - f(a)}{(a+h) - a} = \frac{f(a+h) - f(a)}{h}$$

$$DQ = \frac{f(x+h) - f(x)}{h}$$

Another perspective:

$$DQ = \frac{f(x) - f(a)}{x - a}$$

Problems

1. For each of the following functions, simplify the expression

$$\frac{f(x+h) - f(x)}{h}, \qquad h \neq 0$$

as far as possible.

(a)
$$f(x) = 3x^2 - 5x$$

$$\frac{f(x+h) - f(x)}{h} = \frac{3(x+h)^2 - 5(x+h) - (3x^2 - 5x)}{h}$$

$$= \frac{3(x^2 + 2xh + h^2) - 5x - 5h - 3x^2 + 5x}{h}$$

$$= \frac{3x^2 + 6xh + 3h^2 - 5x - 5h - 3x^2 + 5x}{h}$$

$$= \frac{6xh + 3h^2 - 5h}{h} = \frac{h(6x + 3h - 5)}{h}$$

$$= 6x + 3h - 5$$

Note: What is the average rate of change for consecutive equal-length intervals?

Interval	Difference Quotient		
[a, a+h]	6a + 3h - 5		
[a+h,a+2h]	6a + 9h - 5		
[a+2h,a+3h]	6a + 15h - 5		

(b)
$$f(x) = \sqrt{x^2 - 1}$$

$$\frac{f(x+h) - f(x)}{h} = \frac{\sqrt{(x+h)^2 - 1} - \sqrt{x^2 - 1}}{h} \cdot \frac{\sqrt{(x+h)^2 - 1} + \sqrt{x^2 - 1}}{\sqrt{(x+h)^2 - 1} + \sqrt{x^2 - 1}}$$

$$= \frac{(x+h)^2 - 1 - (x^2 - 1)}{h(\sqrt{(x+h)^2 - 1} + \sqrt{x^2 - 1})}$$

$$= \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h(\sqrt{(x+h)^2 - 1} + \sqrt{x^2 - 1})}$$

$$= \frac{h(2x+h)}{h(\sqrt{(x+h)^2 - 1} + \sqrt{x^2 - 1})}$$

$$= \frac{2x+h}{\sqrt{(x+h)^2 - 1} + \sqrt{x^2 - 1}}$$

(c)
$$f(x) = \frac{1}{x^2}$$

$$\frac{f(x+h) - f(x)}{h} = \frac{\frac{1}{(x+h)^2} - \frac{1}{x^2}}{h}$$

$$= \frac{\frac{x^2 - (x+h)^2}{x^2(x+h)^2}}{h} = \frac{\frac{x^2 - (x^2 + 2xh + h^2)}{x^2(x+h)^2}}{h}$$

$$= \frac{-2xh - h^2}{hx^2(x+h)^2} = \frac{h(-2x-h)}{hx^2(x+h)^2}$$

$$= \frac{-2x - h}{x^2(x+h)^2}$$

$$(\mathbf{d}) \ f(x) = \frac{x}{1 + x^2}$$

$$\frac{f(x+h) - f(x)}{h} = \frac{\frac{x+h}{1+(x+h)^2} - \frac{x}{1+x^2}}{h}$$

$$= \frac{\frac{(x+h)(1+x^2) - x(1+(x+h)^2)}{(1+(x+h)^2)(1+x^2)}}{h}$$

$$= \frac{x+x^3+h+hx^2-x-x^3-2x^2h-xh^2}{h(1+(x+h)^2)(1+x^2)}$$

$$= \frac{-x^2h-xh^2+h}{h(1+(x+h)^2)(1+x^2)}$$

$$= \frac{h(-x^2-xh+1)}{h(1+(x+h)^2)(1+x^2)}$$

$$= \frac{-x^2-xh+1}{(1+(x+h)^2)(1+x^2)}$$

2. The number of pounds (in millions) of lobster caught by Maine commercial fisherman is given by P(t), where t is measured in years. Selected values for P(t) are given in the table.

t	2010	2012	2014	2016	2018	2020	2022
P(t)	255.8	318.3	306.9	302.9	285.8	205.1	107.1

Find the average rate of change in pounds of lobsters caught (i) from 2016 to 2018; (ii) from 2018 to 2020.

Indicate the unites of measure. What does your answers suggest about the change in the number of pounds of lobster caught in recent years?

AROC =
$$\frac{P(2018) - P(2016)}{2018 - 2016} = \frac{285.8 - 302.9}{2} = \frac{-17.1}{2} = -8.55$$
 mil pounds/year

AROC =
$$\frac{P(2020) - P(2018)}{2020 - 2018} = \frac{205.1 - 285.8}{2} = \frac{-80.7}{2} = -40.35$$
 mil pounds/year

The number of pounds of lobsters caught per year is decreasing at a faster rate.

- **3.** A particle moves along a horizontal number line. Its position at time $t \ge 0$ is given by $s(t) = t^2 7t + 2$ where t is measured in seconds and s is measured in meters.
 - (a) Find the average rate of change in the particle's position from t = 0 to t = 8 seconds.

$$\frac{s(8) - s(0)}{8 - 0} = \frac{(8^2 - 7 \cdot 8 + 2) - (2)}{8 - 0} = \frac{8}{8} = 1 \text{ meters/sec}$$

(b) Use your answer in part (a) to determine if the particle is to the left or the right of its initial position at time t = 8.

Since the average rate of change is 1 (> 0) m/sec, the particle is to the right of its initial position at time t=8.

4. The figure shows the graph of the altitude of a plane (h, in feet) from takeoff, t = 0 minutes, to t = 45 minutes.

Use the graph to determine on which five-minute interval, 0-5, 5-10, 10-15, etc, the average rate of change in height is greatest.

5. For each of the following functions, simplify the expression

$$\frac{f(x+h) - f(x-h)}{2h}$$

(a) f(x) = 2x + 5

$$\frac{f(x+h) - f(x-h)}{2h} = \frac{2(x+h) + 5 - (2(x-h) + 5)}{2h}$$
$$= \frac{2x + 2h + 5 - 2x + 2h - 5}{2h}$$
$$= \frac{4h}{2h} = 2$$

(b)
$$f(x) = x^2 + 3x + 4$$

$$\frac{f(x+h) - f(x-h)}{2h} = \frac{(x+h)^2 + 3(x+h) + 4 - ((x-h)^2 + 3(x-h) + 4)}{2h}$$

$$= \frac{x^2 + 2xh + h^2 + 3x + 3h + 4 - (x^2 - 2xh + h^2 + 3x - 3h + 4)}{2h}$$

$$= \frac{4xh + 6h}{2h}$$

$$= \frac{2h(2x+3)}{2h} = 2x + 3$$

Overtime Problems

1. Use technology to sketch the graph of $y = \log_{1/2}(4 - x)$

2. The value, in millions of dollars, for sales of luxury tile flooring from a distributor is modeled by the function F. The value is expected to increase by 3.2% each quarter of a year. At time t = 0, 37 million dollars of sales were processed. If t is measure in years, write an equation for F(t).

Total amount after interest is compounded n times per year:

$$A = P_0 \left(1 + \frac{r}{n} \right)^{nt}$$

A = Accumulated amount

 P_0 = Original investment amount

r = Interest rate (in decimal form, yearly)

t = Time (years)

n = Number of times interest is compounded in a year

$$A = 37(1 + 0.032)^{4t} = 37(1.032)^{4t}$$