According to the Standards:
Instructional programs from preK-grade 12 should enable students to:

- Recognize and use connections among mathematical ideas
- Use the language of mathematics to express mathematical ideas precisely
- Select, apply and translate among mathematical representations to solve problems

In grades $\mathbf{9 - 1 2}$ students should

1. Students should develop an increased capacity to link mathematical ideas and a deeper understanding of how more than one approach to the same problem can lead to equivalent results.

Calculus Scope and Sequence: Infinite Series
Keywords: convergence, integral test, improper integral
Description: This activity will demonstrate the use of the integral test to discuss the convergence of an infinite series.

The Integral Test allows us to decide the convergence or divergence of a series by comparing it to an improper integral.

The Integral Test can be applied to any series whose terms: $a_{n}=f(n)$. Where \boldsymbol{f} can be considered a continuous, positive, decreasing function of a real variable, x.

- If $\sum_{n=1}^{\infty} \frac{1}{4 n^{2}+9} \int_{1}^{\infty} f(x)$ converges, then $\sum_{n=1}^{\infty} a_{n}$, converges
- If $\int_{1}^{\infty} f(x)$ diverges, then $\sum_{n=1}^{\infty} a_{n}$, diverges

Determine whether the harmonic series: $\sum_{n=1}^{\infty} \frac{1}{n}$ converges:
(Note that it fits all requirements for the integral test)

- The limit function is found in F3-Calc-\#3 and requires three arguments: $\lim (f u n c t i o n$, variable, limiting value)
- The integral function is also found in F3-Calc-\#2 and requires four arguments: (function, variable, upper bound, lower bound)
- $\quad \infty$ key is found on the keyboard: <diamond> - catalog

Set up and evaluate the improper integral: $\int_{1}^{\infty} \frac{1}{x} d x$

Note that the the improper integral diverges, therefore the harmonic series is proven to diverge by the integral test.

For a full review of improper integrals see the activity titled: Improper Integration
Try These:

1. $\sum_{n=1}^{\infty} 3 e^{-n}$
2. $\sum_{n=1}^{\infty} \frac{\ln (n)}{n}$
3. $\sum_{n=1}^{\infty} \frac{1}{4 n^{2}+9}$

Answers:

Converges

