Problem 1 – Introduction to an alternating series

With your pencil, touch the top of each vertical line in numerical order. Then answer the questions that follow.

- 1. What do you notice about the path of your pencil point?
- 2. Relate your illustration to a number line with both positive and negative values. What can you now say about the path of the pencil point?
- 3. If the center is 0 and each line is a term belonging to a series, what can you say about the series and its terms?

Problem 2 – Alternating Series Test

If an alternating series $\sum_{n=1}^{\infty} (-1)^n a_n$ or $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges, then these conditions must hold.

(1)
$$\lim_{n \to \infty} a_n = 0$$

(1)
$$\lim_{n \to \infty} a_n = 0$$
 (2) $a_{n+1} \le a_n$ for all n

Use the Home screen to find the limit of a_n .

Press F3: Calc > 3:Limit to enter the limit command followed by the expression, the variable, and the direction the variable approaches.

Use the Stats & List Editor to test the second condition.

At the top of **list1**, enter the formula **seq(n,n,1,20)** to generate the number of the term. Use formulas to generate the terms of a_n in **list2** and the terms of a_{n+1} in list3.

Compare list2 (a_n) and list3 (a_{n+1}) using the formula list3 ≤ list2.

F1+ F2+ F3+ F4+ F5+ F6+ F7+ Tools Plots List Calc Distr Tests Ints			
list1	list2	list3	list4
list1=seq(n,n,1,20)			
MAIN	RAD APPI	ROX FUNC	1/6

Determine the convergence or divergence of the following series by testing the two conditions of the Alternating Series Test.

4.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^3}$$

5.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

6.
$$\sum_{n=1}^{\infty} \frac{n}{(-3)^{n-1}}$$

7.
$$\sum_{n=1}^{\infty} \frac{(-1)^n 2n}{3n-1}$$

Problem 3 – Alternating Series Estimation

Clear all lists except list1.

At the top of **list2**, use the **seq** command to generate the terms of the alternating series, $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n!}$.

Use the **sum** command to find the partial sums of the alternating series. For example, in cell list3[2] enter the formula **sum(list2, 1, 2)** to find the sum of the first two terms of the series.

- 8. Approximate the sum of an alternating series
 - i) by its first three terms
 - ii) by its first six terms

To see the partial sums of the first 20 terms enter the formula $\Sigma((-1)^{n}(n-1)/(2n!),n,1,1)$ in cell list4[1].

Calculate the partial sums for the remaining terms by copying/pasting the formula and changing the last number appropriately.

- **9.** What do you notice about the change in the sum as the value of *n* increases?
- **10.** What do you think will occur with the approximation as the n approaches infinity?