\qquad
\qquad

Problem 1 - Introduction to an alternating series

With your pencil, touch the top of each vertical line in numerical order. Then answer the questions that follow.

1. What do you notice about the path of your pencil point?

2. Relate your illustration to a number line with both positive and negative values. What can you now say about the path of the pencil point?
3. If the center is 0 and each line is a term belonging to a series, what can you say about the series and its terms?

Problem 2 - Alternating Series Test

If an alternating series $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ or $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converges, then these conditions must hold.
(1) $\lim _{x \rightarrow \infty} a_{n}=0$
(2) $a_{n+1} \leq a_{n}$ for all n

Use the Home screen to find the limit of a_{n}.
Press F3: Calc > 3:Limit to enter the limit command followed by the expression, the variable, and the direction the variable approaches.
 list3 \leq list2.

Alternating Series

Determine the convergence or divergence of the following series by testing the two conditions of the Alternating Series Test.
4. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{3}}$
5. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$
6. $\sum_{n=1}^{\infty} \frac{n}{(-3)^{n-1}}$
7. $\sum_{n=1}^{\infty} \frac{(-1)^{n} 2 n}{3 n-1}$

Problem 3 - Alternating Series Estimation

Clear all lists except list1.
At the top of list2, use the seq command to generate the terms of the alternating series, $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n!}$.

Use the sum command to find the partial sums of the alternating series. For example, in cell list3[2] enter the
 formula sum(list2, 1, 2) to find the sum of the first two terms of the series.
8. Approximate the sum of an alternating series
i) by its first three terms
ii) by its first six terms

To see the partial sums of the first 20 terms enter the formula $\Sigma\left((-1)^{\wedge}(n-1) /(2 n!), n, 1,1\right)$ in cell list4[1].
Calculate the partial sums for the remaining terms by copying/pasting the formula and changing the last number appropriately.
9. What do you notice about the change in the sum as the value of n increases?
10. What do you think will occur with the approximation as the n approaches infinity?

