Parabolic Hoops

How＇s your jump shot？Can you make a basket from anywhere within reasonable range of the hoop？You can with mathematics！！It＇s as easy as $y=a(x-h)^{2}+k$ ．

In this project，you will create a virtual basketball court． With each new shot，your program will randomly place you，the shooter，a random distance from a 10 ft hoop． The game will generate a reasonable (x, y) location for the maximum point of your parabolic shot．Using the location of the hoop and the vertex，you the shooter will calculate the amplitude，a，needed to＂Swish＂nothing but net！

Objectives：

Programming Objectives：

－Use the randint（）function to generate random integers．
－Use the plot library to draw line segments and plot points
－Use loops to repeat code
－Use if statements to make selections

Math Objectives：

－Use the vertex form of a quadratics to solve problems
－Use the absolute value function to validate solutions．

Your project will：

Generate a generate the scene．

You will enter the amplitude for the shot． （c）PYTHON SHELL 吅
\ggg \＃Shell Reinitialized
\ggg \＃Running BBALL
\ggg from BBALL import ＊
Max： 7,13
Hoop：11．29， 10
You：0， 5
enter the amplitude：$-3 /(4.29$ 米米2
）

| Fns．．． | a $\mathrm{A} \# \mid$ Tools | Editor Files |
| :--- | :--- | :--- | :--- | :--- |

If you calculate correctly：Swish！！
Swish

1. The path of your basketball will be parabolic. That means, it can be written in the form $y=a(x-h)^{2}+k$
a.) Let's review the properties for the vertex form of a parabola, $y=a(x-h)^{2}+k$.

How does $\underline{\mathbf{a}}$ effect the graph of a parabola?

How do $\underline{\boldsymbol{h}}$ and $\underline{\boldsymbol{k}}$ effect the graph of a parabola?

$y=$
$y=$

$y=$
2. The first step in the coding project will be to create a Python Random Simulation document.

Create a new python project named "BBALL".

Select "Random Simulations" from the Type Menu.

This will automatically import the random library.
You need the randint function from this library to generate random integers.
FILE MANAGER
NEEMPRGRBM
Name $=$ BBALL \underline{a}

Allowed

- Up to 8 characters
- First character: $\mathrm{A}-\mathrm{Z}$
- Remaining characters: A-Z 0-9 _

Random Simulation		
Esc	Types	Ok

(6) EDITOR: BBALL

Math Explorations with Python
TI-84 Plus CE Python Technology
3. You will need 3 more libraries: time, ti_plotib, math.

Fns $>$ Modul $>$ math $>$ from math import *
Fns $>$ Modul $>$ time $>$ from time import *
Fns > Modul > ti_plotlib > import ti_plotlib as plt
math library
You will use the fabs function from the math library to find the absolute value.
time library
This library provides the sleep function.
You will use this to add animation to your shot.
ti_plotlib
You will use many of the plotting features to draw your objects.
4. Use two variables to keep track of the location of the basket. Create the variables bx and by. Set both variables equal to zero.

$$
\begin{aligned}
& \text { \#basket center (bx, by) } \\
& \text { bx }=0 \\
& \text { by }=10
\end{aligned}
$$

*The line \#basket center(bx, by) is known as a comment. Programmers use comments to document parts of their code. You may omit this line if you like. Comments start with a \# symbol. Notice the comment appears in a light gray color.

For now, let's say the ball will leave the player's hand from either 5 or 6 feet off the ground. The player's x value will be 0 .

$$
\begin{aligned}
& \mathrm{px}=0 \\
& \mathrm{py}=\operatorname{randint}(5,6)
\end{aligned}
$$

```
FFns... a A # Tools|
# Random Simulation
from random import *
from math import *
from time import *
import ti_plotlib as plt
-
\begin{tabular}{|l|l|l|l|l|}
\hline Fns... & a \(A\) \# & Tools & Run & Files \\
\hline
\end{tabular}
```

		$\square \square$
II Randow Simulation		
from randon inport it		
frow wath import 菙		
from time inport import ti_plotlib as plt		
llbasket oenter (bs, by)bxal		
$\begin{aligned} & b x=0 \\ & b y=10 \end{aligned}$		
Ilplayer		
	Run	TFiles

tiwe import
import ti_pletilib as plt
Hbesket center (bx,by)
$b x=0$
by $=10$
\#player
$p \mathbf{x}=0$
py reandint $(5,6)$

Fins.	a $\mathrm{A} \equiv \mid$ Tools	Run	Files

Fns > Modul > random > randint
${ }^{* *}$ If you would like the user's shot height to be from the set $\{5,5.1,5.2, \ldots .6\}$
Type py $=\operatorname{randint}(50,60) / 10$

The picture to the left shows the set up for the player, the hoop, and the path for the ball.

The player, will have the point $(0, p y)$ where py is the height the ball is released.
The hoop will be regulation in height. Therefore, it will have a height of 10 ft . You will calculate the x value, bx , the distance to the basketball hoop.

The vertex for the parabola (mx, my) will have a height, my. It will be higher than 10 ft , the height of the hoop. The x value, mx , will be between 0 and bx .
6. The maximum height, my, should be over 10 feet to keep it above the rim.

To keep the shot with realistic values, let my be a random integer between 11 and 16 feet.

$$
\text { my = randint(} 11,16 \text {) }
$$

The typical free throw line is 15 feet from the basket.
Assume the max height of the toss occurs anywhere from 3 to 10 feet away from the player.

$$
m x=\operatorname{randint}(6,12)
$$

Now that you have py, mx, and my; where is bx? To answer this question, you must find a, the amplitude first. Use $\mathrm{y}=\mathrm{a}(\mathrm{x}-\mathrm{h})^{2}+\mathrm{k}$ to find and equation for a .

Math Explorations with Python
TI-84 Plus CE Python Technology
7. Did you say:

$$
\begin{aligned}
& y=a(x-h)^{2}+k \\
& p y=a(0-m x)^{2}+m y \\
& p y-m y=a\left(m x^{2}\right) \\
& \frac{p y-m y}{m x^{2}}=a
\end{aligned}
$$

Add the three lines:

Parabolic Hoops
Student Document

$$
\begin{aligned}
& m y=\operatorname{randint}(11,16) \\
& m x=\operatorname{randint}(6,12)
\end{aligned}
$$

$$
a=(p y-m y) /\left(m x^{* *} 2\right)
$$

Fns $>$ Modul $>$ random $>$ randint
*In python, **2 is used to square a number.
Press the key $\left[\mathrm{x}^{2}\right]$ to get ${ }^{* *} 2$.
8. Now that you have $\mathrm{py}, \mathrm{mx}, \mathrm{my}$ and a how can you find the value of bx ?

9. Did you say use the formula $y=a(x-h)^{2}+k$?

The vertex will be (mx, my). Substitute these values into the appropriate place in the formula.
The point $(b x, 10)$ is one (x, y) point on the equation. Substitute these values into the appropriate place in the formula.
10. Solve the equation for $b x: \quad 10=a(b x-m x)^{2}+m y$
11. Did you get:

$$
\begin{aligned}
& 10-\mathrm{my}=\mathrm{a}(\mathrm{bx}-\mathrm{mx})^{2} \\
& \frac{10-m y}{a}=(\mathrm{bx}-\mathrm{mx})^{2} \\
& \pm \sqrt{\frac{10-m y}{a}}=\mathrm{bx}-\mathrm{mx} \\
& \mathrm{mx} \pm \sqrt{\frac{10-m y}{a}}=\mathrm{bx}
\end{aligned}
$$

12. The parabola has to x-values that reach a height of 10 feet.

You want the second time
the ball reaches 10 .
Use the + not the - sign in your equation.
$b x=m x+\operatorname{sqrt}((10-m y) / a)$
Fns $>$ Modul $>$ math $>$ sqrt
13. Run your code. [Trace]

You should get the screen to the right. If not, fix your errors.
If you reach the page on the right, press [Trace] to get back to the editor.
14. Now to display the data points for the shot. Add the lines:
print("Max", mx, ",", my)
print("Hoop", bx, ",", 10)
print("You", 0, ",", py)
Fns $>\mathrm{I} / \mathrm{O}>$ print
The words "Max:", "Hoop:", "You:", and "," should all be green because they are string. Everything else should have black font.

The [a A \#] key might make it easier to type.

```
EDITOR: BEALL
PROGRAM LINE 0020
```

```
#player
```

\#player
px=0
px=0
py=randint (5,6)
py=randint (5,6)
my=randint(11,16)
my=randint(11,16)
mx=randint (6,12)
mx=randint (6,12)
a=(py-my)/(mx***2)
a=(py-my)/(mx***2)
bx=mx+sqrt((10-my)/a)
bx=mx+sqrt((10-my)/a)
F|ns... |a A \# Tools| Run Files

```
F|ns... |a A # Tools| Run Files
```

```
    3) PYTHON SHELL
>> # Shell Reinitialized
>> # Running BBALL
> from BBALL import w
>>|
```

Fns... 1 a A \#|Tools|Editor|Files

```
    EDITOR: BEALL
PROGRam LINE 0025
mx=randint(6,12)
a=(py-my)/(mx***2)
bx=mx+sqrt((10-my)/a)
```

\#data display
print("Max:", mx,",",my)
print("Hoop:",bx,",",10)
print("You:",0,",",py)

Run your code. [Trace]

Math Explorations with Python
 tI-84 Plus CE Python Technology

Does it display your data?
The sample on the right is only one possible situation.
15. To simplify the display, round the hoop's x location to 2 decimal places.

Add the line: $\quad b x=$ round $(b x, 2)$
before the print statements.
Fns > Type > round

Execute your code. [Trace].
Verify your display now rounds to two places.
16. Now add a line that lets the user enter a guess for the amplitude.

By itself, input lets the user enter a string value. To evaluate the input and save it as a float number, you must float(eval(input.

Type:
pa = float(eval(input("enter the amplitutde: ")))
Fns > Type > float
Fns > I/O > eval
Fns $>\mathrm{I} / \mathrm{O}>$ input
17. Set up the window.

Fns > Module > ti_plotlib > Setup > window
Let the domain be [0,bx] and the range [0, my+ randint $(1,5)$]
The randint will give some extra cushion in the window.
plt.window(0, bx, 0, my+randint(1,5))

Parabolic Hoops
 Student Document

Sample Random Output:

```
>>> # Shell Reinitialized
>>> # Running BBALL
>> from BBALL import *
Max: 12, 11
Hoop: 16.89897948556636 , 10
You: 0, 5
>>|
```

Fns...	a A \#	Tools	Editor\|Files

```
    EDITOR: BBALL
py=randint(5,6)
```

$m y=r$ andint $(11,16)$
$m x=$ randint $(6,12)$
$a=(p y-m y) /(m \times$ 米㫧2)
$b x=m x+s q r t((10-m y) / a)$
$b x=$ round $(b x, 2)$
\#data display_
print("Max:", $\bar{m} x, ", ", m y$)
print("Hoop:",bx,",",10)

Fns...	a A \# Tools	Run	Files

```
    EDITOR: BEALL
    PROGRAM LINE 002?
```

```
bx=mx+sqrt((10-my)/a)
```

bx=mx+sqrt((10-my)/a)
bx=round(bx,2)
bx=round(bx,2)
\#data display
\#data display
print("Max:",mx,",",my)
print("Max:",mx,",",my)
print("Hoop:",bx,",",10)
print("Hoop:",bx,",",10)
print("You:",0,",",py)
print("You:",0,",",py)
pa=float(eval(input("enter the a
pa=float(eval(input("enter the a
mplitude: ")))
mplitude: ")))
FFns... /a A \#|Tools|

```
FFns... /a A #|Tools|
```

${ }^{\text {a }}$ EDITOR: BBALL ${ }^{\text {PROGRAM LINE } 0028}$				$\square \square$
$b x=r o u n d(b x, 2)$				
\#data display				
print("Max: ",mx,",",my)print("Hoop: ",bx,",",10) print("You:",0,",", py)				
$\begin{aligned} & \text { pa=float(eval(input("enter the a } \\ & \text { mplitude: "))) } \end{aligned}$				
plt.window($0, b \times, 0$, my+randint (1,5))_				
Fns...	a A \#	Tools	Run	Files

Math Explorations with Python
 ti-84 Plus CE Python Technology

18. Clear the window.

Fns $>$ Module > ti_plotlib $>$ setup $>$ clear
plt.cls()
19. Now to draw the basketball hoop and backboard.

\square

Backboard:
A line segement will represent the backboard. The height of the board will be 3 ft . The picture to the left has the backboard placed at $x=b x-0.1$. The base of the board is at $\mathrm{y}=10$, while the top is at $\mathrm{y}=13$.

To create the board type:
plt.line(bx-0.1, 10, bx-0.1, 13)

Parabolic Hoops

Student Document

```
8) EDITOR: BBALL (a030
print("Max:",mx,",",my)
print("Hoop:",bx,",",10)
print("You:",0,",",py)
pa=float(eval(input("enter the a
    mplitude: ")))
plt.window(0,bx,0,my+randint(1,5
plt.clis()
FFns... (a A # Tools|
(c) EDITOR: BBALL
    PROGRAM LINE 0033
pa=float(eval(input("enter the a
    mplitude: ")))
olt.window(0,bx,0,my+randint(1,5
olt.cls()
Hhoop
plt.1ine(bx-0.1,10,bx-0.1,13,"")
\begin{tabular}{l|l|l|l|}
\hline Fns... & a \(\mathrm{A} \#\) & Tools & Run \\
\hline
\end{tabular}
```

Fns > Modul > ti_plotlib > draw> line

Red Basket:
To make the hoop red, set the rgb color to: $255,0,0$.

The plot library doesn't have a circle command, however, we can make one using a for loop and plotted points.

Lastly, you will set the plot color back to black.

```
plt.color(255, 0, 0)
for I in range(20):
    plt.plot( cos(i)+bx, sin(i)+10, "o")
plt.color(0, 0, 0)
```

Fns > Modul > ti_plotlib > draw > color
Fns $>$ Modul $>$ ti_plotlib $>$ draw $>$ plot
Fns $>$ Modul $>$ math $>$ trig $>\cos$
Fns $>$ Modul $>$ math $>$ trig $>$ sin

Math Explorations with Python
TI-84 Plus CE Python Technology
20. Now, draw the player. For simplicity, your player needs a head, arm, body and leg. The head will be a circle, the arm, leg, and body will be line segments.

The code template will be:
plt.line($x 1, y 1, x 2, y 2$, ,")

Remember, the player's height is at (px, py)

What do you think the lines of code will look like? Fill in the templates below with values you think will work for the player.

Parabolic Hoops
 Student Document

\#head for i in range(20):

$$
\text { plt.plot(} \cos (i), \sin (i)+p y, " o ")
$$

\#body
plt.line(\qquad , \qquad
\qquad
\qquad ,"")
\#arm
plt.line(\qquad , \qquad
\qquad
\qquad ,"")
\#leg
plt.line(\qquad , \qquad
\qquad
\qquad ,"")

Add these lines to the bottom of your code.
21. Execute your code: [Trace]

The code to the right shows a sample run.
Enter any value for the amplitude and press [enter]
Does your person and basketball hoop look similar to the one on the right?

Run your code several more times. Each time the hoop and player should look a bit different due to the variabliity in our random variables.

Sample Run- Answers will vary

```
>> Shell Reinitialized
>>> # Running BBALL
>> from BBALL import *
Max: 10, 13
Hoop: 16.55, 10
You: 0, 6
enter the amplitude: |
```

Fns...	a A \# Tools	Editor	Files

Sample Run- pictures will vary

Math Explorations with Python

tI-84 Plus CE Python Technology

22. One possible solution for the person is shown below.
\#draw person
for I in rang(20):
plt.plot($\cos (i), \sin (i)+p y, " o ")$
plt.line(px, 1, px, py-1, "")
plt.line(px, py-1, px+1, py," ")
plt.line(px, 1, px+1, 0, "")

Parabolic Hoops
Student Document

```
    EDITOR: BBALL
    PROGRAM LINE 0044
    O")
plt.color(0,0,0)
#draw the person
for i in range(20):
**plt.plot(cos(i),sin(i)+py,"o")
plt.line(px,1, px,py-1,"")
plt.line(px,py-1,px+1,py,"")
plt.line(px,1,p\times+1,0,"")
"-
```

23. Now to plot the player's shot.
```
#player
px=0
py=randint(5,6)
my=randint(11,16)
mx=randint(6,12)
a=(py-my)/(mx米类2)
bx=mx+sqrt((10-my)/a)
bx=round(bx,2)
```

2. What does the variable ' a ' represent?
3. What does the variable 'bx' represent?
4. Recall the vertex form for a parabola is: $y=a(x-h)^{2}+k$.

What variable did you use to represent h , the horizontal component for the vertex?

What variable did you use to represent k, the vertical component for the vertex?
25. To plot the path of the user's shot:

You will use the vertex form of a parabola: $y=a(x-h)^{2}+k$

Substituting the the point ($m x, m y$) as the vertex:

$$
y=a(x-m x)^{2}+m y
$$

About line 26 you request the variable pa, as the user's amplitude.

$$
y=p a(x-m x)^{2}+m y
$$

26. First, change the plot color to orange:
\#shot
plt.color(255,165,0)

(9) EDITOR: BEALL ${ }^{\text {PROGRAMLINE }}$				
\#draw the person for in range(20):				
- plt.plot(cos(i),sin(i)+py, "o")				
$\begin{aligned} & \text { plt.line(px,1,px,py-1,"") } \\ & \text { plt.line }(p x, p y-1, p x+1, p y, " ") \\ & \text { plt.line(px,1,px+1,0,"") } \end{aligned}$				
\#shot plt.color(255,165,0)				
Fns...	a A \#	\# Tools\|	Run	Files


```
EDITOR: BEALL
        PROGRAM LINE 0050
plt.line(px,1,px,py-1,"")
plt.line(px,py-1,px+1,py,"")
plt.line(px,1, px+1,0,"")
#shot
plt.color(255,165,0)
for }x\mathrm{ in range(1,bx+1):
* y=pa*(x-mx)**2+my
*plt.plot(x,y,"o")
|Fns... (a A #|Tools) Run /Files
```

Math Explorations with Python
ti-84 Plus CE Python Technology
29. To animate your shot add the line

```
sleep(0.2)
```

Fns > Modul > Time > sleep
30. Add the line plt.show().

This line will keep the plot on the screen until the user presses the [clear] button.

Fns > Modul > ti_plotlib > show
31. Execute your program. [Trace]

Here is the sample to the right worked out.

$$
\begin{aligned}
& y=a(x-h)^{2}+k \\
& y=a(x-m x)^{2}+m y \quad \text { \#max height (mx, my) } \\
& y=a(x-6)^{2}+16 \\
& 10=a(10.65-6)^{2}+16 \quad \text { \#Use hoop to find the amplitude } \\
& -6=a(4.65)^{2} \\
& a=-6 /(4.65)^{* *} 2
\end{aligned}
$$

Parabolic Hoops

Student Document

```
(%) EDITOR: BBALL PROGRAM LINE 0051 (a)
plt.line(px,1,px,py-1,"")
plt.line(px,py-1,px+1,py,"")
plt.line(px,1,px+1,0,"")
#shot
plt.color(255,165,0)
for }x\mathrm{ in range(1,bx+1):
    -y=pa*( }x-mx\mathrm{ )***2+my
*plt.plot(x,y,"o")
* sleep(0.2)
|FFns... 
```

(6) EDITOR: BBALL
PROGRMMLINE 0044
plt.line ($p x, 1, p x, p y-1, " ")$
plt. line ($p x, p y-1, p x+1, p y, " \|)$
plt.line ($p \times, 1, p \times+1,0$, ""I)
plt.color $(255,165,0)$
for x in range (1,bx+1):

* $y=p a w(x-m x) *$ 米2+my
-plt.plot $(x, y, " \circ ")$
-sleep(0.2)
plt.show_plot()
Fns... a A \#|Tools| Run |Files
PYTHON SHELL
\ggg \# Shell Reinitialized
\ggg \# Running BBALL
\ggg from BBALL import *
Max: 6 , 16
Hoop: 10. 65,10
You: 0,6
enter the amplitude: |
Fns... |a A \#|Tools|Editor|Files

Math Explorations with Python
 TI-84 Plus CE Python Technology

32. Lastly, add code to check the accuracy.

This code will go right before the last line plt.show_plot()
If the difference between the user's a value at $x=b x$ and the real a value is within a 0.2 print "swish" otherwise print "miss".

Mathematically, that would be $|\mathrm{pa}-\mathrm{a}| \leq 1$.
Using python, that is fabs $(\mathrm{pa}-\mathrm{a})<=1$.
if fabs $(\mathrm{pa}-\mathrm{a})<=0.2$:
plt.color(255,0,255)
plt.text_at(1, "swish","center")
else:
plt.color(0,180,180)
plt.text(1, "miss","center")
Make sure the plt.color and plt.text_at have two diamonds for indentation.
Fns > Ctl > if..else
Fns > Modul > TI plot_lib > Draw > color
Fns > Modul > TI plot_lib > Drawe > draw_text

```
        Parabolic Hoops
    StudENT DocumENT
(c) EDITOR: BRALL
- sleep(0.2)
if fabs(pa-a)<=0.2:
* plt.color(255,0,255)
*plt.text_at(1,"swish","center"
else
else:
* plt.color(0,180,180)
*"plt.text_at(1,"miss","center")
plt.s_ow_plot()
Fns... |a A #|Tools| Run |Files
```

33. How many shots can you make in a row before you miss?
