

Name	

Drag point C, which will drag the secant line

CB around the circle. In this lesson, you will explore how tangent lines differ from secant

Class

lines.

Tangents to a Circle

Open the TI-Nspire document Tangents_to_a_Circle.tns.

A line that intersects a circle in two points is called a secant. What is a tangent line, and how does it differ from a secant line? This activity will explore properties of tangents.

Move to page 1.2.

 \overrightarrow{CP} is a secant of circle A. $\angle CBA$ has been measured. Dragging point C also drags the \overrightarrow{CP} around the circle. As you drag C, points P and B will move away from each other or closer to each other.

- 1. a. As you drag point C, what happens to $\angle CBA$?
 - b. When points *P* and *B* are very close to each other, what is the measure of $\angle CBA$? What happened to point *P*?
 - c. When $\angle CBA$ measures 0°, where is point *P* on the circle in relation to *B*?
 - d. When $\angle CBA$ measures 90°, what has happened to the secant line?

Move to page 1.3.

A tangent line has been constructed at point T. Drag point B to move the tangent line around the circle.

2. A tangent line intersects the circle in exactly one point, which is known as the point of tangency. How is a tangent related to the radius at the point of tangency?

-U	Tangents to a Circle	
	Student Activity	

Name	
Class	

Move to page 2.1.

This page shows two tangent lines intersecting at point *B*.

- 3. Drag point *B* and observe the tangent segments *AB* and *BC*.
 - a. What can you conjecture about the tangent segments AB and BC?
 - b. What happens to the tangent segments when *B* is inside the circle? Why?
 - c. Select to show the radii and \overline{OB} . Look at the triangles formed from the segments. What do you notice about $\triangle AOB$ and $\triangle COB$?

Move to page 3.1.

- 4. Prove that $AB \cong CB$.
 - a. Select \triangle to draw OA and OC. Press \triangle to show the next step. Why is OA \cong OC?
 - b. Select to show the next step. Why is $\overline{OA} \perp \overline{AB}$? Why is $\overline{OC} \perp \overline{CB}$?
 - c. Select to show the next steps. Why is $\triangle AOB \cong \triangle COB$?
 - d. Why can you conclude $AB \cong CB$?