\qquad

A line that intersects a circle in two points is called a secant. What is a tangent line, and how does it differ from a secant line? This activity will explore properties of tangents.

Move to page 1.2.

$\overrightarrow{C P}$ is a secant of circle $A . \angle C B A$ has been measured. Dragging point C also drags the $\overrightarrow{C P}$ around the circle. As you drag C, points P and B will move away from each other or closer to each other.

1. a. As you drag point C, what happens to $\angle C B A$?
b. When points P and B are very close to each other, what is the measure of $\angle C B A$? What happened to point P ?
c. When $\angle C B A$ measures 0°, where is point P on the circle in relation to B ?
d. When $\angle C B A$ measures 90°, what has happened to the secant line?

Move to page 1.3.

A tangent line has been constructed at point T. Drag point B to move the tangent line around the circle.
2. A tangent line intersects the circle in exactly one point, which is known as the point of tangency. How is a tangent related to the radius at the point of tangency?

Name \qquad
Class \qquad

Move to page 2.1.

This page shows two tangent lines intersecting at point B.
3. Drag point B and observe the tangent segments $\overline{A B}$ and $\overline{B C}$.
a. What can you conjecture about the tangent segments $\overline{A B}$ and $\overline{B C}$?
b. What happens to the tangent segments when B is inside the circle? Why?
c. Select ${ }^{\wedge}$ to show the radii and $\overline{O B}$. Look at the triangles formed from the segments. What do you notice about $\triangle A O B$ and $\triangle C O B$?

Move to page 3.1.

4. Prove that $\overline{A B} \cong \overline{C B}$.
a. Select Δ to draw $\overline{O A}$ and $\overline{O C}$. Press Δ to show the next step. Why is $\overline{O A} \cong \overline{O C}$?
b. Select ${ }^{\wedge}$ to show the next step. Why is $\overline{O A} \perp \overline{A B}$? Why is $\overline{O C} \perp \overline{C B}$?
c. Select ${ }^{\wedge}$ to show the next steps. Why is $\triangle A O B \cong \triangle C O B$?
d. Why can you conclude $\overline{A B} \cong \overline{C B}$?
