Investigating the Angles of a Triangle

Activity overview The following will find the sum of the interior angles of a triangle and the sum of the remote interior angles of a triangle.

Creating the TI-Nspire Document

1. Open a new document by pressing Home Key (\because n and selecting 5: New Document, (Figure 1).
2. Select 2:Add Graphs \& Geometry (Figure 2).

You might need to change the Document Settings from Radians to Degrees for this activity. To do this press $(\mathbb{\pi})$ and select 8 : System Info, then 1: Document Settings.
(Figure 3)

Figure 1

Figure 2

Figure 3
tab to move through the fields. Press the $\boldsymbol{\nabla}$ on the NavPad to change Radians to Degrees (Figure 4)

Click OK.
3. To hide the axes and the entry line, press nem 2: View, 3:Hide Entry Line, then press (enm 2: View, 1:Hide Axes (Figure 5).
4. Explore by moving the pointer around the screen, pressing the NavPad's multidirectional arrow keys.

In geometry, the NavPad will move the pointer to select objects. Press the click button in the
 action of the tool that was previously selected.

Interior Angles of a Triangle

1. Construct a triangle, $\triangle A B C$, near the center of the screen.

- Select the Triangle tool (nem) 8: Shapes, 2:

Triangle (Einim (Figure 6). Using the Navpad, position the pointer on the screen.
2. Press the first vertex on the screen.

Figure 4

Figure 5

$\begin{aligned} & \text { 1:Tools } \\ & \text { 2:View } \end{aligned}$	eg auto real
4 3: Graph Type fint 4 :Window 5:Trace	
6:Measurement - 7: Points \& Lines	
8: Shapes	- 1:Circle
- 9: Construction	-2:Triangle
\cdots A:Transformation	$\square 3:$ Rectangle
	4: Polygon 5: Regular Polygon

Figure 6
－One way to label vertices and points is to type the label immediately after the vertex or point appears on the screen．（Figure 7）

3．Using the Navpad again，move the cursor to a second location for the next vertex and press the（23）button to place the vertex．Type the label immediately．

4．Repeat this step in a third non－collinear location for the third vertex and its label．
－If you did not label the vertices when the points were constructed，you can label them using the Text tool by pressing
－（emin 1：Tools，5：Text．
－Select a vertex，and press 远 or the（2） button to open an edit box．
－Press the appropriate letter key，and press S瓦。

5．Press the（esc key to exit the draw triangle mode．

6．To drag a letter so that it does not obscure the construction，press the esco key，point to the letter，press the（3）button，and drag the letter．
－Press 〔sing ，（5），or ©so to quit dragging．
7．Measure the interior angles of the triangle．
－（ena 7：Measurement，4：Angle，and select each vertex in either a clockwise or counter－ clockwise direction moving the cursor on the screen with the NavPad（Figure 8）．
－No matter what direction you use，the vertex must be selected second．Not only is the angle drawn，but the angle being measured is temporarily marked．

Figure 8
8. Press the (esc key to exit the measurement mode.
9. Now let's calculate the sum of the interior angles.

Calculations require that a computation be entered onto the screen.

- (remu 1: Tools, 5: Text.
- Position the pointer on the screen.

Press 给

- Type the phrase $S 3=A+B+C$ on the screen using the keypad, and press to affix the statement to the screen (Figure 10).

Note: You can start the phrase with a word or letter like " s " as long as it is not a reserved word like "sum."

- Press (emm 1: Tools, 7: Calculate to select the Calculation tool. Point at the statement
 calculation rule. When the Pointer is moved away, the rule will be highlighted.
(Figure 11)

10. As you move the cursor away from the calculation, a message asking for the first variable in the calculation will appear
(Figure 11). Select the first value of the angle measures on the screen.

Figure 9

Figure 10

Figure 11
11. The second variable value is requested as you move the cursor away from the first value.
12. Finally, the third variable value is requested as you move the cursor away from the second value.
13. A sum will appear on the screen as you move away from the last number selected
(Figure 12).

- You can use the Text tool to label this numerical result (Figure 13).
- To change the number of decimal places displayed, press (em 1: Tools, 3: Attributes, and select the number (Figure 14).
- Use the NavPad arrows to increase or decrease the precision.

14. Save the file.

- Press $\boldsymbol{\sim}$ 1: File, 4: Save As, and enter the name 'AngleSumAll' (Figure 15).
- Press 荋, and click on OK to save the file.

Figure 12

Figure 13

Figure 14

Figure 15
15. Drag a vertex of the triangle to explore different types of triangles (Figure 16).

- How does the construction prove that the sum of the angles of a triangle is 180° ?

16. Save the file as before.

Figure 16

Figure 17

Figure 18
20. Label $<$ DAC. (Figure 19).
21. Now let's calculate the sum of angles B and C. Calculations require that a computation be entered onto the screen.

- (emen 1: Tools, 5: Text.
- Position the pointer on the screen.

Press 通 to open the edit box.

- Type the phrase $S 2=B+C$ on the screen
 statement to the screen (Figure 20).

22. Press (menu 1: Tools, 7: Calculate to select the Calculation tool. Point at the statement $S 2=B+C$, and press Eixis to select this calculation rule. When the Pointer is moved away, the rule will be highlighted.
(Figure 21). See step 8 on page 4 for more detailed steps.
23. Drag a vertex of the triangle to explore different types of triangles (Figure 22).

- How does the construction prove that the sum of the remote interior angles of a triangle is equal to the exterior angle ${ }^{\circ}$?

24. Save the file as before.

Figure 19

Figure 20

Figure 21

Figure 22

