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Abstract: This activity involves some of the prerequisites of calculus relating to

functions and equations. It also contains an application of differentiation. It introduces
students to an interesting property of cubics and a method of proving that property using
the TI-89 scripts. They then use the symbolic capacity of their calculator to generalize
upon specific results.

NCTM Principles and Standards:

Algebra standards

a) Understand patterns, relations, and functions

b) generalize patterns using explicitly defined and recursively defined functions;

c) analyze functions of one variable by investigating rates of change, intercepts, zeros,
asymptotes, and local and global behavior;

d) use symbolic algebra to represent and explain mathematical relationships;

e) judge the meaning, utility, and reasonableness of the results of symbol
manipulations, including those carried out by technology.

f) draw reasonable conclusions about a situation being modeled.

Problem Solving Standardbuild new mathematical knowledge through problem

solving; solve problems that arise in mathematics and in other contexts; apply and adapt a

variety of appropriate strategies to solve problems; monitor and reflect on the process of

mathematical problem solving.

Reasoning and Proof Standard

a) recognize reasoning and proof as fundamental aspects of mathematics;

b) make and investigate mathematical conjectures;

c) develop and evaluate mathematical arguments and proofs;

d) select and use various types of reasoning and methods of proof.

Key topic: Application of differentiation. Prerequisites of calculus relating to functions
and equations. Scripts, formal proofs.

Degree of Difficulty: Elementary

Needed Materials TI-89 calculator

Situation: Cubic polynomials have many interesting properties. In this activity we’ll
investigate one of them with the aid of the TI-89 calculator. What is the relationship
between the x-coordinates of the three zeros of a cubic?



Choose three distinct and arbitrary values for the zeros of the cubic. Form the
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of these zeros and find the equation of the line tangent to the cubic at the point whose x-
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when y=0, so we’ll solve this equation for x when y irax TRy —— e N g
tangent line intersects the cubic polynomial at the third zero!

/ Is this always true? Consider a different set of zeros

and try this process again. To find out whether this always works, we’ll use what we've
done so far to create a script:

We’'ll turn what we’ve written into a script which can be followed for any cubic:
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Scripts can be very useful in proving properties. Here we showed that the tangent line to
any cubic at the point whose x-coordinate is the average of two zeros always passes
through the third zero. There is one problem. What if the cubic doesn’t have three
distinct real zeros? Go back and look at the proof we generated. It is still valid if any two,
or even all three of the zeros are the same. But what if two of the zeros are complex?



