wf.

Q
x Chapter 8
o

Numerical Methods 'n this chapter, you will take a closer look at the numerical
= methods used to solve initial-value differential equations,
and Series d

including the methods used internally by the TI-86. It is
important to understand what is being done internally so that
you can knowledgeably choose the parameters, such as
difTol, and so that you have a feel for the accuracy of the
displayed values. In a later chapter, you will also be doing
numerical computations that the TI-86 does not provide. With
an understanding of what the TI-86 can compute, you can use
its results as a first step in a more complicated process.

Introduction

Consider the typical format for a single first-order initial-value problem:

dy
g—f(fs}-‘(t)). Y(tg) =Yg, toSt<tj.

Most numerical methods for solving such differential equations have two parts.

* Alocal approximation procedure to successively compute values y, = y(z;) for some
to <ty <t <<t Stp,i=L2,...,m.

* Aninterpolation procedure to approximate y(t) for {-values falling between ¢, and ¢,
for some j.

The simplest method, called Euler’s method, is now almost always presented in textbooks about
differential equations (including many recent calculus books). Suppose you know at some
intermediate value ¢ = a that y(a) = s. The differential equation also tells you that y'(a) = f(a, s). Thus
you can use a tangential approximation as a local approximation procedure,

y(t)=y(a)+y'(a) (t—a)=s+ f(a,s) (t—a)

to get an estimate for the unknown function at a {-value near a. For Euler's method, you will change -
values by a fixed stepsize h, often by deciding

so that you know it will take exactly m steps to go from the initial to final {-values.

© 1997 TEXAS INSTRUMENTS INCORPORATED

78 DIFFERENTIAL EQUATIONS WITH THE TI-86

Start with
a=t,s=y,andt=4,+h=1t,
which gives us the first tangential approximation
y(@) =y, +hfty, y,),
which you label y,. Then the successive tangential approximations are given by

ti =t +h,
Yieg = Vi +h f(t;,), i=0,1,...,m—1

For this method, it is traditional to use a piecewise linear interpolation procedure (“connect the dots”)
to estimate values between steps. In this case, that corresponds to using the same tangential
approximation for a “partial step” between ¢;, and ¢; .

Euler’s method is commonly used in textbooks, and this method has been implemented on the TI-86.
In the DifEq graphing mode, selecting Euler on the format screen will cause this numerical method to
be used to compute the points for graphing. The viewing window parameters tMin and tMax
correspond to ¢, and {;, and tStep corresponds to h when the last parameter Estep = 1. In the
connected style, line segments are drawn between the plotted points (the dots are connected).

Example 1: Euler's Method Graphically Explored

Use m = 4, 16, and 64 steps of Euler’s method to approximate the solution to

? = cos(.“ + }‘_], ¥(02)=01, 02<r<18.
!

Plot the results on the same screen to compare how the approximations “improve.”

Solution

T : 1 int 1 1 i i Flokl Flokz Flot:
1. Enter the equation mu;» the differential equation editor O 1Bcos (L4010N
as Q'1=cos (t+Q1). (Figure 8.1)

FOFE WIND INITC AXES GRAFH
o | 3

Figure 8.1

2. Set the DifEq graphing mode, and select Euler on the o Hggggggf‘ t
format screen to use Euler's method for computations. i c0f idOn
(Figure 8.2)

Figure 8.2

© 1997 TEXAS INSTRUMENTS INCORPORATED

CHAPTER 8: NUMERICAL METHODS AND SERIES 79

3. Set the initial conditions editor (INITC) to have tMin =
0.2and QlI1 =0.1. For AXES, select x =tandy = Q1.
For m = 4 (Figure 8.3), set the viewing window

parameters to

tMin = 0.2, tMax =1.8, tStep =4, Hh

: . Figure 8.3
tPlot =0, xMin =-0.1, xMax = 1.9,
xScl =0.1, yMin=-0.2, yMax =0.7,

yScl =0.1, Estep=1.

4. To compare these computations with the later ones, use
the [GRAPH] STPIC command ([GRAPH] [MORE] [F4]) to
ame=F1

store this image as a picture named P1. (Figure 8.4)

EVAL =TGDE RCGDE IETIME RCFIC

Figure 8.4

5. Change tStep = 0.1 to get the graph of Figure 8.5 where

m = 16. Store the second plot as a picture named P2. //_\

Figure 8.5
6. SettStep = 0.025 to get the graph when m = 64. Recall
the two previous pictures (with RCPIC) to see all three
on the same screen. (Figure 8.6)
Figure 8.6

It is not hard to understand that making i smaller generally leads to better approximations. Because of
this, the TI-86 allows you to have several Euler steps before bothering to plot a point on the graph. The
parameter tStep sets the change in t for plotted points while the parameter Estep sets the number of
Euler steps to be taken between plotted points.

For example, setting tStep = 0.1 and Estep = 4 (with tMin=0.2 and tMax=1.8) would also compute
m = 64 total Euler steps but it would only plot (and allow you to trace) on 16 graphical points. This is
important because you might need to take several hundred Euler steps to achieve reasonable accuracy,
but you would only want to plot and trace on a fraction of these points.

Series play two roles in the field of numerical differential equations. One is that for certain types of
differential equations, you simply accept an infinite power series as the format for a solution. Then
for practical computations, you might simply use a finite number of terms in the series.

©1997 TEXAS INSTRUMENTS INCORPORATED

80 DIFFERENTIAL EQUATIONS WITH THE TI-86

The second role is that of rating the local approximation procedures by how they compare to a local

power series expansion. In general, you consider the local error to be the error you make for any one
step of the method you are using. For example, the step procedure used in Euler's method is exactly

the first two terms of the Taylor series expansion at { = a given below (perhaps in a slightly different

notation from the version you have seen before).

o " L)
Y (ﬂ'} h2 i Y (CJ) h3+“"+ Y (a] h" -
2 6 n!

yla+h)=y(a)+y'(a) h+

Using the formula for the remainder, if you truncate the Taylor series to a finite Taylor polynomial, you
can prove that the local error is a multiple of the next power of k. For example, the local error using
the tangential approximation for estimating y(a + k) in Euler’s method is known to be

'—‘;—2(-5—)—}12 for some & betweena and a+h OR K h*.

While this is the error estimate for one step, you have taken m steps to reach the final {-value.
Generally

m=(t; —1y)/h

so there is some accumulation of the local errors in the final approximation for y(t,). The total error
you have after many steps is called the global error. Not surprisingly, the worst global error tends to
occur where you stop at ¢ = {,. It can be shown that the global error for Euler’s method is a multiple of
h (one lower power than in the local error estimate). In numerical analysis, this is called an order i
method. Its importance is this: if you cut the step size k in half for an order h method, you can expect
the global error that you make to also be cut in half. In an order k° method, cutting the step size h in
half would result in a global error one-fourth as large as before. You will soon see the advantages of a
higher order method.

To experiment numerically with the properties of the error in various numerical methods, you need to
work an example where you know the exact answer. Consider

d i
d_} =1+ (_\.-‘ = r)z , y(0)=05, 0<r<1, which has the exact solution y=t +2L,
t '
If you look at the set of exact solutions for initial conditions 1

Qll ={.3, 4, .5, .6,.7}, you can gain a graphical understanding

about how hard it is to accurately solve this initial-value

problem. See Figure 8.7, where —0.1<x=r<11, —-03<y<27,

and you have plotted these exact solutions y = ¢ + 1/(C-t) in b=
Func graphing mode. Changing C gives a different solution in
the family, and this corresponds to different initial conditions
Ql1, namely QlI1 = 1/C.

w=2

Figure 8.7

Notice in Figure 8.7 how a very small change in the initial value y(0) at {=0 may result in a much larger
change in the true solution y(1) at ¢=1. All numerical methods effectively “get a little off” of the true
solution curve onto a “nearby” member of the family of all solutions as they step. In this family,
“getting a little off” near ¢ = 0 can result in “being off quite a bit” when you get to ¢ = 1.

© 1997 TEXAS INSTRUMENTS INCORPORATED

CHAPTER 8: NUMERICAL METHODS AND SERIES 81

Example 2: Euler's Method Numerically Explored

Numerically compute the solution to the known problem on the previous pages using Euler’s method
with different values for the stepsize h. Store the results, and use list operations to confirm the
expected relationship between the size of k and the size of the final t-value 1. Estimate the number of
Euler steps needed to have a final accuracy of 1E-7.

Solution

1. Enter the equation into the differential equation editor
as Q'1=1+(Q1-t)". Select Euler in the format screen.
Set the initial conditions editor to have tMin = 0 and
Ql1 = 0.5. For AXES, select x =tandy = Q1.

Set the viewing window parameters initially to be
tMin =0, tMax = 1, tStep =.1,
tPlot =0, xMin = -0.1, xMax = 1.1,
xScl =0.1, yMin= "0.3, yMax =2.7,
yScl =0.1, Estep =1.

2. Move back to the home screen with [auIT]. Set y1 to 1=K+l C2-w ——
be the exact solution (with ¢ replaced by x) by the 9ld, 12
command y1 = x + 1/(2-x). Then evaluate the true sty " 626315789474
solution at 0.1 and 1. (Figure 8.8) 2 2
3. You are going to check six different choices for the
value of ki, and you can do this in the home screen by Figure 8.8
repeatedly changing tStep and using the command =
eval followed by the desired ¢-value. (To enter the eval eval .1 . 6953
command, press [MATH] [F5] (MISC) [F5].) ewval 1 :
£1.942204284126>
See Figure 8.9 for the computations using the current

NUM FROE AMGLE HYF IETEE

Figure 8.9

L1.94220434 1865
.B1+tSter o1

eual .81
{.9125%
eual 1
{1.99328755515%
L]

tStep = 0.1. Note that the command eval evaluates the
selected graphing object (using the selected
computational method Euler) at the given t-value.

Figure 8.10

©1997 TEXAS INSTRUMENTS INCORPORATED

82 DIFFERENTIAL EQUATIONS WITH THE TI-86

It is tedious to repeatedly do this by hand as shown in Figure 8.10, and then to build up the lists of
results with the aug command from the [LIsT] [F5) (OPS) menu. Instead, use a short program
(which can be modified for later investigation of other methods) to do this process.

PROGRAM: ERRORS

:Disp “Assumes DEmethod set”
:Disp “and exact soln is yl”
:seq(.5/(5%J),d,1,6)>HH
:tMax>TF

:HH(1)>tStep

:(eval tStep)>LE

:(eval TF)>GE

:For(J,2,dimL HH,1)
:HH(J)>tStep

:aug(LE,eval tStep)>LE
:aug(GE,eval TF)>GE

:End

:LE-y1(HH)>LE

:GE-y1(TF)>GE

:Disp HH,LE,GE
: e) s ; EREORS
Rur.mmg this progll*am for this exampl(? tal_tes qulte_a Rssumes DEmethod set
while (about 20 minutes)! The output is displayed in and exact soln is 4l
Fieure 8.11 .1 .02 .864 Se-4 1,..
8 B £-.881315789474 -5,6..
£-.857795158141 -.@81.
Done
4. These lists are best displayed in the list editor. From the .
home screen, use the command SetLEdit, HH,LE,GE Figure 8.11
to put these lists in the list editor. (You can find this
command in the CATALOG under S, by pressing
[LisT] [F5) (OPS) [MORE] [MORE] [MORE] [F3], or you can simply
type the letters SetLEdit from the keyboard.)
5. Press [LIST] [F4] (EDIT) to bring up the list editor to LE T G_Em?gs i
view these computed lists. (Figure 8.12) j'g.EU_EEE 5 | Lo
-BE-H ~EEHE -y
To test the claim that the local errors (LE) behave like 5530 | i
a constant times k', create a new list where each entry
is an entry from LE divided by the square of the e
corresponding entry from HH. Figure 8.12
6. With the cursor positioned at the very top of the screen S TETTE BXTrrrT A
in the list-name area, move to the top to an empty :E.E'J_SEE'S g%;;%
colm;m a|1_|1d p;t:ss EN;E;{‘%. Thecrll type the name of this -g%gio ;%EE
ist, H2 (Fi 13 ss [ENTER]. A.36-10 | 2,226
new list, (Figure), and press [ENTER] TR |
Figure 8.13

© 1997 TEXAS INSTRUMENTS INCORPORATED

CHAPTER 8: NUMERICAL METHODS AND SERIES 83

7. Press again with the new name highlighted to attach - T Gfos?m : k]
a formula to this new listname H2. The formula is typed ;g.EU_SEE B A
inside quotations marks. (Figure 8.14) :E'E%g-io L
In this way, the formula inside the quotation marks is Hz ="LE~ ¢ ﬁﬁafzs)
attached to the list H2, and the list H2 is locked (see the o i in
icon in the column heading area) so that it always stays Figure 8.14

defined according to the formula.

As you see in Figure 8.15, the claim proves to be correct - T
with the constant about ~0.125. -E OEE -5

e : =
|HZ(1J =- 1315?894?368

Figure 8.15

8. In asimilar fashion, you create the new list H1 with the
formula GE/HH to see that the global errors for
approximating y(1) are roughly equal to the constant
~0.693 times h. (Figure 8.16)

Working backwards, if you wish to know y(1) with an
accuracy of 1E-7, then you need to choose h < 1.44E-7 Flgure 8.16
or you need to take approximately m=6,930,000 steps of

Euler’'s method.

It is possible to generalize Euler’s method (and all the methods in this chapter) to vector differential
equations. Thus when you enter a system of the form
Q1] | f(t,01,02,03)
= fz(f» Q]s sz QS) ’
Q,3 f“("‘Q]- QQ., Q3)

it can be considered as a vector equation

0l
Q' =F(r,Q) where Q=
03
Euler's method for such a system then becomes
Ly =t +h,
r,+l =t; +h, Ol =01, +h f(t;,01,,02,,03,),
or
Qi1 =Q; +h F(r Q) 02,,,=02,+h f,(;,01;,02;,03)),

031, =03, +H 5 (501,02, 03 =0 L cim—1,

You will not pursue the theory behind numerical methods for systems any further in this chapter, but
the TI-86 has been programmed to handle this generalization.

Euler’s method is easy to understand (and easy to program if you wish to do s0), but it is not
computationally efficient. To obtain reasonable accuracy, you must take a large number of small steps.

©1997 TEXAS INSTRUMENTS INCORPORATED

84 DIFFERENTIAL EQUATIONS WITH THE TI-86

It is much better to use a higher order local approximation method which will give better accuracy
with fewer steps.

Next, you will look at a further series expansion, both to better understand series solutions and to gain
some insight into the second method implemented on the TI-86. If you have not previously worked
very much with series, the next example might be a little hard to follow. You can go on without
understanding every detail.

Example 3: Series Solution Explored

Find the series expansions for y(t), the solution to
dy 2
—=1+(yv-t), 0) =05,
- (y=1)", 0

out at least to the cubic terms in the expansion.
Solution

There are two different methods for finding the terms in the series. First, you can (repeatedly)
differentiate both sides of the differential equation implicitly to get higher derivatives. Do this once
carefully.

;—i(%):%(l+(y—r)2)=0+2(_v—r]%(}-‘—r]=2[y—r](%—l)

Thus you can know that the following is true:

)

B ; 3. p 2 2
L wilyed (d—)—l], o [d—y—l} sy 22,

dr? dt dt?

You can evaluate these formulas (and the differential equation) at =0 knowing that ¢(0)=0.5.
¥(0) =05,
y’(0) =1+(05-0)% =125,
v7(0)=2(05-0)(1.25-1) = 0.25,
¥”(0) = 2(125-1)% +2(05-0)(025) = 0.375

Knowing these derivatives at {=0, you can write the Taylor series expansion for the solution.

The second method leads directly to the series. Suppose the solution has the form

yt)=Y a,t".

n=0

© 1997 TEXAS INSTRUMENTS INCORPORATED

CHAPTER 8: NUMERICAL METHODS AND SERIES 85

Assuming this series can be differentiated term-by-term, substitute the series expressions for y and
v’ into the differential equation.

2
> na, " = l+[2an 1" —r]

n=| n=0

ay +2a,t +3ast® +da, P+
2
=1+ (a(, +[a, 1] +ay? +a3r3+---)
= l+a0(a0 +[al = l}r +a2:2+---)+[a] e l]r(an +[a| - l]r +a2r2+m)+a3r"'(an+---)+-~

- {1 +ag2}+ {Zaﬂ[a, - 1]}: + {2a0a2 + [a, - 1]2 }33 + {Zana3 + 2[a, - l]a?_ }r3+.. :

Setting the coefficients of like powers of ¢ to be equal on both sides of this equation, you find that this
gives equations relating each coefficient a, to coefficients you already know. For example, the
constant a, on the left side must equal the constant {1+a,’} on the right side. Then 2a, = {2a,a, - 1]}
matching linear terms. You start out knowing a, = 0.5 from the given initial condition. You find

eli)
R T L e T

o0 |—

a=yO0)=7, a=%, a,=
These are the same coefficients that you got in the first method (as far as you went).
y(0)=05, y(0)=125 y”(0)/2!=0125, y”(0)/3!=00625
In particular, you could use as a first local approximation any partial sum of the series
yO+h)y=t+3n+in® +Ln’ +Lnts.

Unfortunately, the methods you used to find a series expansion in Example 3 do not lend themselves
to easy implementation for successive steps as in Euler’s method. There is just too much symbolic
work involved in getting the series expansion for each step. The local approximation procedures used
in Runge-Kutta methods match more terms of the series expansion but are much easier to compute
numerically.

Recall the general first-order initial-value problem you wish to solve.

dy

E:, ('fv}‘(r))‘ y(f()):}’@, f(]gfgff.

The following is a two-stage Runge-Kutta method that is of order 2’ (that is, its expansion will
effectively match terms in the series expansion out to the A’ but generally differ after that).

Ly =t +h,
k,=hf(t;,y;)
ky=hf(t;+h, y; +k;)
ky+ky,
Vil = Vi + i=0,1,....,m-1

& 2 L]

This two-stage Runge-Kutta method is sometimes called the improved Euler method, and it is possible
to interpret it as an average slope method (since f(t, y,) and f(¢,+h, y,+k,) can be considered as slopes
at both ends of the interval ¢, <t <t, +h).

©1997 TEXAS INSTRUMENTS INCORPORATED

86 DIFFERENTIAL EQUATIONS WITH THE TI-86

Briefly, the justification that this method has order R’ involves two steps. First, you use the idea of
implicit differentiation demonstrated in Example 3 to expand the solution in general.

df d
y(t; +h) =y, +f(f,-,y,—)h+%{—a{—+a—);f} B 4.

(t:.3)

Then you expand the approximation given by this Runge-Kutta method (using Taylor series in two
variables on k,).

k, +k

y(t; +h)=y; + 2 = Y +3hf(t,y)+5h (Ut +hy; +h £, ¥:))

=¥ +%hf(f; '.Vi)+%h{f(ri 2 ¥i)+%—(ﬂ s)’iJ""i;_{(f.-s ¥i) F .3 "'}
Terms shown in each infinite expansion match, but the next terms in the expansion do not.
The general form for a three-stage Runge-Kutta method is:
ting =t; +h,
ky =hf(t‘-,yi-)
ky =h f(t; +0 by, + By k)

ks :hf(.f!- +og hy; + By ky+ B kz)

}"-+i=_\u':-+'r1"| k]+W2 k2+W3 k3, !:0,1 m‘_l

The coefficients
Oy, 05, By ys Bsys Byas Wiy Wy, and wy

are chosen so that there is the highest order of match possible with the series expansion. Expanding in
a fashion similar to that used for the specific second-order method above, it can be shown that this will
be order k" if and only if

woEwatws =1, wy o twy =1, wy)t +wy =

b1 =%, Byi+ By =04

1
T

© 1997 TEXAS INSTRUMENTS INCORPORATED

CHAPTER 8: NUMERICAL METHODS AND SERIES 87

There are many ways to solve this nonlinear system of equations for the needed constants in such a
third-order Runge-Kutta method. The following come from the reference by Iserles where the idea of a
RK tableawx is introduced to neatly display these parameters.

oy By % 2l % %

o3| By Bss 1 -1 2 % 0 2
[wowews TE3E T113

RK Tableaux Classical RK Nystrom Scheme

For 2, 3, and 4 stage Runge-Kutta methods, it is possible to achieve the orders k’, k', and ',
respectively. For each, it turns out that there are many ways achieve the highest possible order. It
takes at least six stages to achieve order 1’ . Also it becomes more difficult to achieve orders higher
than k' in the vector case.

Example 4: Runge-Kutta Method Numerically Explored

Write a short program to implement the classical third-order Runge-Kutta method to solve again

d ’
d_} = 1+(y—r)2, y(0)=05, 0<r<1, which has the exactsolution y= r+2—l.
t o
Include in the program the creation of lists consisting of the local error (for the first step) and the
global error (for y(¢)) for a variety of stepsizes.

Solution

The following program aims more for simplicity than elegance and general use. The differential
equation and the exact solution appear explicitly in the code (for example, y(1) = 2).

The only user option is the number of steps m. You will need to modify the code (or redesign the first
part) to use it on other problems with a known solution. To use the code on a problem where you do
not know the exact solution, you will need to eliminate the creation of the error lists.

To highlight the simplicity of the Runge-Kutta method, the subprogram RK3 implements one step of
the classical third-order method. This subprogram assumes that the expression for the right side of the
differential equation f(7, Y) is stored in 2. (You can use a function slot to store an expression
involving several variables. If you store different values to T and Y, evaluating 2 uses the most
recently stored values.) Every time RK3 is called, it expects the variables named T1, Y1, and H to
contain the current ¢, y,, and k. The subprogram “returns” the values ¢,,, and ¥, , by storing these in T|
and Y1 (thus updating the variables for the next step).

Note that the use of DelVar at the end deletes all the temporary variables created in the program.
There is no way to declare a program variable as local, but at least this action “cleans up” a little to
keep your variable list down in size to save memory. The variables Tl and Y1 remain because you
might want to do something further with the final approximation outside the program.

©1997 TEXAS INSTRUMENTS INCORPORATED

88

DIFFERENTIAL EQUATIONS WITH THE T1-86

PROGRAM: EX4
1y1=T+1/(2-T)
1y2=1+(Y-T)*
:0>A:12B:0.525:0>C
:Lbl A

:Input “No. steps=",M

PROGRAM: RK3
(TIST:YI>Y:H*y2>K1
(TIHH/ 23T YI4+K1/2>Y :H*y2>K2
(TIHHDT:YI-K1+2*K2>Y : H*y22K3
(TRTL:YIH(K1I+H4*K2+K3) /62Y 1
:Disp TI,YI

:(B-A)/M>H:Disp H:Pause
tASTI:S>YI:RK3

:If C=0:Then
:{HI>HH: {YI-y1}>LE
:Else

:aug(HH, (H})>HH

:aug(LE, (YI-y1})>LE

+End

:For(I,2,M,1)

:RK3

:End

:If C==0:Then

{YI-y1}>GE

:Else:aug(GE, {YI-y1})>GE

:End

:1>C :Menu(1l,”NEWM”,A,5,"QUIT",E)
:Lb1 E
:DelVar(yl):DelVar(y2):DelVar(A)
:DelVar(B):DelVar(S):DelVar(C)
:DelVar(H):DelVar(M):DelVar(T):DelVar(Y):DelVa
r(K1):DelVar(K2)

:DelVar(K3)

1. Enter and run the program, picking the number of steps
M to be, for example, 5, 10, 20, 40, 100, and 125. This
will create a list of step sizes HH={.2, .1, .05, .025, .01,
.008}. The first pass with M=5 will first pause to show

you H.
2. Press to have the program continue, ending as in 1. 9249?1432
Figure 8.17 with the displayed menu allowing the users 1.31421724883
to pick a new M or to quit. 1. 6331?9383'23
1.99963796688
Figure 8.17

3. Press[f1] and make another pass through the program
for another number M. The last pass through the
program with M=125 will end as in Figure 8.18. Press
to quit the program.

1
1.99999996849
H 1 1 1

Figure 8.18

© 1997 TEXAS INSTRUMENTS INCORPORATED

