According to the Standards:

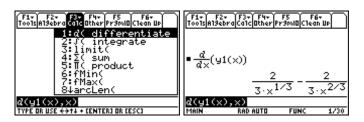
Instructional programs from preK-grade 12 should enable students to:

- Recognize and use connections among mathematical ideas
- Make and investigate mathematical conjectures

In grades 9-12 students should

1. Students should develop an increased capacity to link mathematical ideas and a deeper understanding of how more than one approach to the same problem can lead to equivalent results.

Calculus Scope and Sequence: Applications of Derivatives **Keywords:** Rolle, Rolle's theorem **Description:** This activity will illustrate Rolle's Theorem


Rolle's Theorem: If f, is a function continuous over a closed interval [a,b], differentiable on the open interval (a,b) and f(a)=f(b)=0, Then there is at least one value of c, in (a,b) such that f'(x)=0

Determine whether or not the hypothesis of Rolle's Theorem holds on the following function: $f(x) = x^{\frac{2}{3}} - 2x^{\frac{1}{3}}$ for [0,8]

1. First input the function into Y= and observe it's graph over the interval (it's always a good idea to set the window a bit larger than the interval to observe behavior around the endpoints)

$\begin{array}{c} \hline f_{1+} & f_{2+} & f_{3} & f_{4} & f_{5} \\ \hline Troots 200m [Edit] & f_{11} & f_{5} & f_{6} & f_{5} \\ +PLOTS & & & & \\ & & & & \\ & & & & \\ & & & & $	F1+Y F2+ Tools200m xmin=-2. xmax=10. xscl=1. ymax=5. yscl=1. xres=2	Tools Zoom Trace Regraph Math Draw Pen C
MAIN RAD AUTO FUNC	MAIN RAD AUTO FUNC	MAIN RAD AUTO FUNC

- 2. While the function is continuous it would also be good to look at the derivative:
- Go to the Homescreen (Press HOME)
- Go to F3-Calc-#1
- Calculate the derivative function

- 3. This can be entered into the Y= menu as follows
- Go to Y=, choose an empty slot (y2 in this case)
- Press 2^{nd} -Ans then ENTER

That will paste the exact result into the proper slot

• Look at the graph

F1+ F2+13 85 85 - 55 ToolsZoom: 35 / 85 - 55 (855 - 5) -PLOTS	F1+ F2+ F3 F4 F5+ F6+ 5" ToolsZoomEdit / A11Style(3003) +PLDTS	F1+ F2+ F3 F4 F5+ F6+ F7+8:: Too1sZoomTraceReGraphMathDrawPen:-C
$y_{1=x^{2/3}-2\cdot x^{1/3}}$	$y_{1=x^{2/3}-2 \cdot x^{1/3}}$ $y_{2=x^{2/3}-2 \cdot x^{1/3}}$	
94= 95= 96=	^v g2= 3·×1/3 - 3·×2/3 y3= y4=	
<u> </u>	<u>45=</u> y3(x)= Main rad auto func	MAIN RAD AUTO FUNC

It would appear that the derivative might be undefined at x = 0 let's look at the table for confirmation:

- Go to TableSet and set the values in a small neighborhood of 0
- Look at the TABLE

E1+ F2 173 :- 1 75 1 5 TABLE SETUP	F1+ F2 (13) (14) (15) (15) (15) (15) (15) (15) (15) (15
tb1Start: =.002	002 -47.29
	001 -73.33
Graph <-> Table: OFF) Independent: AUTO)	0. undef .001 -60.
(Enter=SAVE) (ESC=CANCEL)	.002 -36.71
X= T.UUZ TYPE + LENTERJ=OK AND LESCJ=CANCEL	X=002 Main RAD AUTO FUNC

Since Rolle's Theorem says it must be differentiable on the open interval we have satisfied the entry points. So, now let's see if the rest of the condition applies:

- Calculate y1(0)
- Calculate y1(8)
- If they are both = 0, then find a value where the derivative (here in $y_2(x)$) is = 0

All this can be done on the Homescreen:

F1+ F2+ F3+ F4+ F5 F6+ ToolsAl9ebraCalcOtherPr9miDClean Up	F1+ F2+ F3+ F4+ F5 F6+ ToolsAl3ebraCalcOtherPr3mIOClean UP
$= \frac{d}{dx}(y1(x))$	$= \frac{\alpha}{d\times}(y1(x))$
	$\frac{2}{3 \cdot x^{1/3}} - \frac{2}{3 \cdot x^{2/3}}$
$\frac{2}{3 \cdot x^{1/3}} - \frac{2}{3 \cdot x^{2/3}}$	
■y1(0) 0	• y1(8) 0
y1(0)	y1(8)
MAIN RAD AUTO FUNC 2/30	MAIN RAD AUTO FUNC 3/30

- To Solve we go to F2-Algebra #1 and enter the following arguments: o (function = 0, variable)
- In this case the derivative function we are using is in $y_2(x)$

F1+ F2+ F3+ F4+ F5 F6+ Tools Al3ebra Calc Other Pr3miDClean Up	F1+ F2+ F3+ F4+ F5 F6+ ToolsAl9ebraCalcOtherPr9mIDClean Up
∎ <u>α 1:solve(</u> α) 2:factor(3:expand(2	$\frac{2}{3 \cdot x^{1/3}} - \frac{2}{3 \cdot x^{2/3}}$
4:zeros(5:approx(6:comDenom(0)	■y1(0) 0 ■y1(8) 0
= 91 7:propFrac(0 ■ y1 8↓nSolve(0	■ solve(y2(x) = 0, x) x = 1 solve(y2(x)=0, x)
TYPE OR USE ++++ CENTER] OR CESC]	MAIN RAD AUTO FUNC 4/30

Therefore, we have confirmed Rolle's theorem for this example.