Name

Pythagorean Relationships Student Activity

Class _

Open the TI-Nspire document Pythagorean_Relationships.tns.

This activity lets you move sets of three squares to see what kind of triangles can be formed using one side of each square.

◀ 1.1 1.2 ▶ Pythagorean_…ips 🗢 Pythagorean Relationships To generate a random set of squares on the next page, select Δ . Grab and drag the closed circles to try to form a triangle using one side of each square. Select 🛆 and ⊽ to generate additional random sets of squares.

Move to page 1.2.

- 1. Select the up or down arrows on the screen. Describe the numbers and figures that appear and the connections among them.
- 2. Drag the closed points to create a triangle so that one side of each square is a side of the triangle.
 - a. Fill in the table for Trial 1. Record the side lengths and areas and classify the triangle. Enter the smaller side measures in rows A and B and the largest side measure in row C.
 - b. Select the up or down arrows to do three more trials with a different set of numbers for each trial, and record the results in the table.

Trial 1			Trial 2				
		Side Length	Area	Classify ∆ by Angles	Side Length	Area	Classify ∆ by Angles
Small	Α						
Medium	В						
Large	С						

Trial 3			Trial 4				
		Side Length	Area	Classify ∆ by Angles	Side Length	Area	Classify ∆ by Angles
Small	Α						
Medium	В						
Large	С						

3. Work with the others in your group to organize your results according to the type of triangle by angle.

Acute Triangles				
a^2	b ²	c ²		

Obtuse Triangles				
a²	b ²	c ²		

			_						
Right Triangles				No Triangles					
a²	b^2	c ²		a^2	b ²	c ²			

Describe the relationship among a^2 , b^2 , and c^2 that seems to be true for each class of triangles.

- a. acute
- b. obtuse
- c. right
- d. no triangle was formed
- 4. Brianna has five squares with areas 1 in², 2 in², 3 in², 4 in², and 5 in². Which sets of three squares will fit on the sides of a right triangle? Explain your reasoning.
- 5. If *a*, *b*, and *c* are the lengths of the three sides of a triangle with *c* the longest side, which of the following will be **never** true, **sometimes** true, and **always** true? Use the work you have done with squares and triangles above to justify your answers.
 - a. $a^2 + b^2 = c^2$
 - b. a + b = c
 - c. a+b>c
 - d. $c^2 a^2 = b^2$