Inscribed Angles Theorem

Time required
ID: 12438
15 minutes

Activity Overview

Students will begin this activity by looking at inscribed angles and central angles and work towards discovering a relationship among the two, the Inscribed Angle Theorem. Then, they will look at two corollaries to the theorem.

Topic: Circles

- Construct central and inscribed angles
- Inscribed angles theorem

Teacher Preparation and Notes

- To complete this activity, students will need to know how to change between pages, grab and move points.
- The multiple-choice items are self-check and students can check them by pressing menu and select Check Answer (or pressing ctrr + 日).
- To download the student TI-Nspire documents (.tns file) and student worksheet, go to education.ti.com/exchange and enter "12438" in the keyword search box.

Associated Materials

- Inscribed_Student.doc
- Inscribed.tns

Suggested Related Activities

To download any activity listed, go to education.ti.com/exchange and enter the number in the keyword search box.

- Inscribed and Central Angles in a Circle (TI-Nspire technology) - 9054
- Inscribed Angles (TI-Nspire technology) - 9687
- Central versus Inscribed Angles in Circles (TI-84 Plus family) - 7111

Problem 1 - Similar Triangles

Students will begin this activity by looking at inscribed angles and central angles and work towards discovering a relationship among the two.
Students will be asked to collect data by moving points A and C. Students are asked questions about the relationships in the circle and are asked to make a conjecture. In order to calculate the ratio of $m \angle A C B$ to $m \angle A D B$, students can use the Text tool and the Calculate tool in the Actions menu.

On page 1.6, students will look at two inscribed angles intercepted by the same arc and are asked to make a conjecture about the relationship.

In an advanced setting, a proof of the inscribed angle theorem and the two conjectures in problem one are appropriate and can be proved using isosceles triangles.

Problem 2 - Extension of the Inscribed Angle Theorem
In Problem 2, students will look at two more angles created from the central angle and the intercepted arc. Both sections of this problem are corollaries of the Inscribed Angle Theorem and both solutions are congruent to the measure of the central angle intercepted by the arc or one-half the measure of the central angle.

Student Solutions

1. Sample answers

Position	Measure of $\angle A C B$	Measure of $\angle A D B$	$\frac{m \angle A C B}{m \angle A D B}$
$\mathbf{1}$	48.79°	97.57°	0.5
$\mathbf{2}$	39.19°	78.39°	0.5
$\mathbf{3}$	31.03°	62.06°	0.5
$\mathbf{4}$	31.03°	62.06°	0.5

2. $\frac{1}{2}$

TI-nspireria TImath.com

3. Sample answers

Position	Measure of $\angle A C B$	Measure of $\angle A E B$
$\mathbf{1}$	49°	49°
$\mathbf{2}$	37.12°	37.12°
$\mathbf{3}$	60.22°	60.22°
$\mathbf{4}$	60.22°	60.22°

4. Sample answer: They are congruent.
5. diameter of the circle
6. 90°
7. Sample answers

Position	Measure of $\angle A C B$	Measure of $\angle A D B$	Measure of \angle AGE
$\mathbf{1}$	51.58°	103.17°	51.58°
$\mathbf{2}$	62.74°	125.49°	62.74°
$\mathbf{3}$	56.47°	112.93°	56.74°
$\mathbf{4}$	56.47°	112.93°	56.74°

8. $\frac{1}{2}$
9. Sample answers

Position	Measure of $\angle A C B$	Measure of $\angle A D B$	Measure of $\angle A B E$
$\mathbf{1}$	56.6°	113.21°	56.6°
$\mathbf{2}$	39.26°	78.52°	39.26°
$\mathbf{3}$	55.69°	111.39°	55.69°
$\mathbf{4}$	61.88°	123.77°	61.88°

10. $\frac{1}{2}$
