Interior Angles of Polygons

by Mary Bourassa

Activity overview

This activity allows students to discover the value of the sum of the interior angles of an n-sided polygon.

Concepts

- Sum of the interior angles of a triangle
- Angle measurement

Teacher preparation

Download the student tns file.
Classroom management tips
This activity is designed for students who have already learned how to measure angles using TI-Nspire as well as inserting formulas (as a text box) and performing calculations. Students can work individually or in groups.

TI-Nspire Applications

- Graphs \& geometry
- Lists \& spreadsheet
- Notes
- Calculator
- Data \& statistics

Step-by-step directions

On page 1.2 students verify the interior angles of a triangle sum property by dragging any of the vertices and observing that the sum remains constant with a value of 180°.

On page 1.4 students will

- Use the Polygon tool (MENU > SHAPES > POLYGON) to create a quadrilateral, naming the vertices as they are created.
- Measure all four interior angles and place the measurements next to the corresponding vertex.
- Open a text box (MENU > ACTIONS > TEXT) and write $\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}$ in it.
- Calculate the sum of the angles (MENU > ACTIONS > CALCULATE) by clicking on the formula they just

created then on each of the angle measures (not on the vertices).
- Create as many non-overlapping triangles within the polygon as possible.
- Use the calculator page (CTRL + TAB to move over) to calculate the sum of the angles in the number of triangles created.
- Compare the results.

On page 1.6 students will repeat the process from page 1.4 with a pentagon.

On page 1.8 students will create a hexagon then create as many non-overlapping triangles as possible and use those to calculate the sum of the interior angles of the hexagon.

On page 1.9 students will enter the data they have collected for:

- numbers of sides of the polygon
- number of non-overlapping triangles created
- sum of the interior angles of the polygon

They will extend this to a heptagon and octagon.

On page 1.11 students will set up a scatter plot with the number of sides as the independent variable and the sum of the interior angles of the polygon as the dependent variable.

They will note that the relationship is linear.

On page 1.12 they will be asked to return to the scatter plot and add the line of best fit. They need to note its equation on page 1.12

Page 1.13 asks for the slope and y-intercept of the line of best fit.

Page 1.14 asks students to generalize their findings by writing the formula for the sum of the interior angles of a polygon in two ways.

Page 1.15 asks students to apply their formula to a 20 -sided polygon.

Assessment and evaluation

- This activity is intended as an investigation. Teachers may wish to assess whether students have completed the activity and should debrief at the end.

Student TI-Nspire Document: Interior angles of a polygon.tns

1.3	1.4	1.5	1.6	DEG AUTO REAL
On the next page:				
\checkmark				
\checkmark Draw a quadrilateral.				
\checkmark Measure the interior angles and calculate				
their sum.				
\checkmark Draw as many non-overlapping diagonals				
as you can inside the figure.				
\checkmark Calculate the sum of the angles of all the				
triangles.				

41.4	1.5	1.6	1.7	Deg auto	REAL	\square
, 1 cm					-1.	
						0/99

1.5	1.6	1.7	1.8	DEG AUTO REAL
Onthe next page:				
\checkmark				
\checkmark Draw a pentagon.				
\checkmark Measure the interior angles and calculate				
their sum.				
\checkmark Draw as many non-overlapping diagonals				
as you can inside the figure.				
\checkmark Calculate the sum of the angles of all the				
triangles.				

1.7	1.8	1.9	1.10	DEG AUTO REAL
On the next page:				
\checkmark				
\checkmark Draw a hexagon.				
\checkmark Draw as many non-overlapping diagonals				
as you can inside the figure.				
\checkmark Calculate the sum of the angles of all the				
triangles.				

On the next page create a scatter plot with the number of sides (sides) as the independent variable and the sum of the interior angles of the polygon (angle_sum) as the dependent variable.

