Differentiation Test 6A

Name:

8 9 10 11 12

Question: 1

If $f(x) = \log_e(\sin(2x))$ then $f'(\frac{\pi}{6})$ is equal to

a)
$$-\frac{2\sqrt{3}}{3}$$
 b) $\frac{2\sqrt{3}}{3}$ c) $2\sqrt{3}$

b)
$$\frac{2\sqrt{3}}{3}$$

c)
$$2\sqrt{3}$$

d)
$$-2\sqrt{3}$$
 e) $\sqrt{3}$

e)
$$\sqrt{3}$$

Question: 2

If $y = \cos^{-1}\left(\frac{5}{4x}\right)$ and x > 0 then $\frac{dy}{dx}$ is equal to

a)
$$\frac{-20}{\sqrt{25-16x^2}}$$

b)
$$\frac{-12}{\sqrt{16x^2 - 25}}$$

c)
$$\frac{-4}{\sqrt{25-16x^2}}$$

d)
$$\frac{\sqrt{25-16x^2}}{-12}$$

e)
$$\frac{5}{x\sqrt{16x^2-25}}$$

Question: 3

The volume of a sphere is decreasing at a rate of 3 cm³/min. When the radius is 3 cm, the rate of change of the radius of the sphere, in cm/min is equal to:

a)
$$-108\pi$$

$$-108\pi$$
 b) 108π

c)
$$-\frac{1}{12\pi}$$
 d) $\frac{1}{12\pi}$

d)
$$\frac{1}{12\pi}$$

e)
$$-12\pi$$

Question: 4

If $y = \tan^{-1} \left(\frac{x}{3} \right)$ then $\frac{d^2y}{dx^2}$ is equal to

a)
$$\frac{-54x}{(9x^2+1)^2}$$

a)
$$\frac{-54x}{\left(9x^2+1\right)^2}$$
 b) $\frac{-27}{\left(9x^2+1\right)^2}$ c) $\frac{-18x}{\left(9x^2+1\right)^2}$ d) $\frac{-6x}{\left(x^2+9\right)^2}$ e) $\frac{3x}{\left(x^2+9\right)^2}$

c)
$$\frac{-18x}{(9x^2+1)^2}$$

d)
$$\frac{-6x}{(x^2+9)^2}$$

e)
$$\frac{3x}{\left(x^2+9\right)^2}$$

Question: 5

If $b \in \mathbb{R}^+$, then gradient of the normal to the curve: $3\sin(y) = bx$ at the origin is equal to:

a)
$$-\frac{3}{b}$$

a)
$$-\frac{3}{b}$$
 b) $-\frac{b}{3}$ c) $\frac{3}{b}$ d) $\frac{b}{3}$

c)
$$\frac{3}{b}$$

d)
$$\frac{b}{3}$$

Texas Instruments 2015. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Question: 6

If $x = \frac{1}{2t}$ and $y = \sqrt{t}$ then $\frac{dy}{dx}$ is equal to:

a)
$$-\frac{1}{\sqrt{t^3}}$$

b)
$$\frac{1}{\sqrt{t^3}}$$

a)
$$-\frac{1}{\sqrt{t^3}}$$
 b) $\frac{1}{\sqrt{t^3}}$ c) $-\frac{1}{4\sqrt{t^3}}$ d) $-\sqrt{t^3}$ e) $-4\sqrt{t^3}$

d)
$$-\sqrt{t}$$

e)
$$-4\sqrt{t^3}$$

Question: 7

The gradient of the tangent to the curve $x^3 + 9xy + y^3 + 11 = 0$ at the point (-1,2) is equal to

b) 7 c)
$$-\frac{1}{7}$$
 d) $\frac{1}{7}$ e) -1

d)
$$\frac{1}{7}$$

Question: 8

If f(x) = x(x-4)(x-2)(c-x) is convex over the interval [0, 1] then:

a)
$$c = 0$$

b)
$$c = 2$$

c)
$$c = 0, 2, 4$$

$$c = 0$$
 b) $c = 2$ c) $c = 0, 2, 4$ d) $c = -\frac{4}{3}$ e) $c = \frac{5}{4}$

$$c = \frac{5}{4}$$

Question: 9

The graph of $y = x^2 e^{-2x}$

- has a local minimum at $(1,e^{-2})$ and an asymptote at x=0.
- has a local maximum at (0,0) and an asymptote at y=0.
- has a asymptotes at x = 0 and y = 0.
- has a local maximum at $(1,e^{-2})$, a local minimum at (0,0) and no asymptotes
- has inflection points at $x = \frac{2 \pm \sqrt{2}}{2}$ and an asymptote at y = 0

Question: 10

If $y = \sin(t)$ and $x = \cos(t)$ then $\frac{d^2y}{dx^2}$ is equal to:

a)
$$tan(t)$$

b)
$$-\tan(t)$$

c)
$$\sin(t)\cos(t)$$

d)
$$-\sec^2(t)\sin(t)$$

e)