Differentiation Test 6A

Name:

Question: 1

If $f(x)=\log _{e}(\sin (2 x))$ then $f^{\prime}\left(\frac{\pi}{6}\right)$ is equal to
a) $-\frac{2 \sqrt{3}}{3}$
b) $\frac{2 \sqrt{3}}{3}$
c) $2 \sqrt{3}$
d) $-2 \sqrt{3}$
e) $\sqrt{3}$

Question: 2

If $y=\cos ^{-1}\left(\frac{5}{4 x}\right)$ and $x>0$ then $\frac{d y}{d x}$ is equal to
a) $\frac{-20}{\sqrt{25-16 x^{2}}}$
b) $\frac{-12}{\sqrt{16 x^{2}-25}}$
c) $\frac{-4}{\sqrt{25-16 x^{2}}}$
d) $\frac{\sqrt{25-16 x^{2}}}{-12}$
e) $\frac{5}{x \sqrt{16 x^{2}-25}}$

Question: 3

The volume of a sphere is decreasing at a rate of $3 \mathrm{~cm}^{3} / \mathrm{min}$. When the radius is 3 cm , the rate of change of the radius of the sphere, in $\mathrm{cm} / \mathrm{min}$ is equal to:
a) -108π
b) 108π
c) $-\frac{1}{12 \pi}$
d) $\frac{1}{12 \pi}$
e) -12π

Question: 4
If $y=\tan ^{-1}\left(\frac{x}{3}\right)$ then $\frac{d^{2} y}{d x^{2}}$ is equal to
a) $\frac{-54 x}{\left(9 x^{2}+1\right)^{2}}$
b) $\frac{-27}{\left(9 x^{2}+1\right)^{2}}$
c) $\frac{-18 x}{\left(9 x^{2}+1\right)^{2}}$
d) $\frac{-6 x}{\left(x^{2}+9\right)^{2}}$
e) $\frac{3 x}{\left(x^{2}+9\right)^{2}}$

Question: 5

If $b \in R^{+}$, then gradient of the normal to the curve: $3 \sin (y)=b x$ at the origin is equal to:
a) $-\frac{3}{b}$
b) $-\frac{b}{3}$
c) $\frac{3}{b}$
d) $\frac{b}{3}$
e) -1

[^0]
Question: 6

If $x=\frac{1}{2 t}$ and $y=\sqrt{t}$ then $\frac{d y}{d x}$ is equal to:
a) $-\frac{1}{\sqrt{t^{3}}}$
b) $\frac{1}{\sqrt{t^{3}}}$
c) $-\frac{1}{4 \sqrt{t^{3}}}$
d) $-\sqrt{t^{3}}$
e) $-4 \sqrt{t^{3}}$

Question: 7

The gradient of the tangent to the curve $x^{3}+9 x y+y^{3}+11=0$ at the point $(-1,2)$ is equal to
a) $\quad-7$
b) 7
c) $-\frac{1}{7}$
d) $\frac{1}{7}$
e) -1

Question: 8

If $f(x)=x(x-4)(x-2)(c-x)$ is convex over the interval $[0,1]$ then:
a) $c=0$
b) $c=2$
c) $c=0,2,4$
d) $c=-\frac{4}{3}$
e) $c=\frac{5}{4}$

Question: 9

The graph of $y=x^{2} e^{-2 x}$
a) has a local minimum at $\left(1, e^{-2}\right)$ and an asymptote at $x=0$.
b) has a local maximum at $(0,0)$ and an asymptote at $y=0$.
c) has a asymptotes at $x=0$ and $y=0$.
d) has a local maximum at $\left(1, e^{-2}\right)$, a local minimum at $(0,0)$ and no asymptotes
e) has inflection points at $x=\frac{2 \pm \sqrt{2}}{2}$ and an asymptote at $y=0$

Question: 10

If $y=\sin (t)$ and $x=\cos (t)$ then $\frac{d^{2} y}{d x^{2}}$ is equal to:
a) $\tan (t)$
b) $-\tan (t)$
c) $\sin (t) \cos (t)$
d) $-\sec ^{2}(t) \sin (t)$
e)

[^1]
[^0]: (C) Texas Instruments 2015. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

[^1]: (C) Texas Instruments 2015. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

