

An Introduction to Derive

Part 1: Familiarisation with the software

Years 7 to 10 examples

Task	Derive 5 steps	Answer
a. Algebraic solve Solve $10 a+2=15 a-1$ for a	Enter $10 a+2=15 a-1$ Solve menu: select 'Expression’ Dialog box should show Variable: a, algebraic \& real solution Click the "Solve" button [or type solve($10 a+2=15 a-1, a)$]	
b. Rearranging a literal equation Rearrange $\boldsymbol{E}=\boldsymbol{m} \boldsymbol{c}^{2}$ to make \boldsymbol{m} the subject	Enter $\boldsymbol{e}=\boldsymbol{m} \times \mathbf{c}^{\wedge}{ }^{\text {2 }}$ Solve menu: select 'Expression’ Dialog box: Variable: m, algebraic [or Type solve $\left(\boldsymbol{e}=\boldsymbol{m} \times \boldsymbol{c}^{\wedge} \mathbf{2}, \boldsymbol{m}\right)$]	
c. Rearranging a literal equation Rearrange $\boldsymbol{E}=\boldsymbol{m} \boldsymbol{c}^{2}$ to make \boldsymbol{c} the subject	Edit the entry line to solve($\left(\boldsymbol{m} \times \boldsymbol{c}^{\wedge} 2, c\right)$	
d. Solve the simultaneous equations $y=4 x-5$ and $2 x+3 y=8$	Solve Menu: select ‘System’ Dialog box: 2 equations OK Dialog box: Enter equations: $y=4 x-5 \& 2 x+3 y=8 . \text { SOLVE }$	

2. CAS functionality: SOLVE

Years $11 \& 12$ examples

Task	Derive 5 steps	Answer
a. Algebraic solve Solve $x^{2}+7 x-3=-2 x-5$ for x Enter $x^{2}+7 x-3=-2 x-5$ Solve menu: select 'Expression' Dialog box should show Variable: x, algebraic \& real solution. Click "Solve" l		

An Introduction to Derive

3. CAS functionality: FACTOR

Years 7 to 10 examples

Task	Derive 5 steps	Answer
a. Prime factors Find the prime factors of 50220	Enter 50220 Simplify menu: select 'Factor' Dialog box: click FACTOR	
b. Lowest Common Denominator Express $1 / \mathrm{a}+1 / \mathrm{b}$ with a common denominator	Enter 1/a-1/b Simplify menu: select 'Factor' Dialog box: click FACTOR button	
c. Common factors Factorise 8ab + 12ac	Edit the enty line to factor(8ab + 12ac)	
d. Patterns with quadratic factors Factorise $\begin{aligned} & \mathrm{a}^{2}-\mathrm{b}^{2} \\ & 4 \mathrm{c}^{2}-9 \mathrm{~d}^{2} \\ & \mathrm{~b}^{2}-\mathrm{a}^{2} \end{aligned}$	Enter $\boldsymbol{a}^{\wedge 2-b} \boldsymbol{b}^{\wedge}$ Simplify menu: select 'Factor' Dialog box: click FACTOR button Edit entry line to factor $\left(4 c^{\wedge} 2-9 d^{\wedge} 2\right)$ Edit entry line to factor $\left(b^{\wedge} 2-a^{\wedge} 2\right)$ etc	

4. CAS functionality: FACTOR (Years $11 \& 12$ examples)

Task	Derive 5 steps	Answer
a. Factorising polynomials over Q Find the factors of $x^{4}-9$ over the Rational field	Enter $2 x^{\wedge} 4-3 x^{\wedge}$ 3-3x-2 Simplify menu: select 'Factor' Dialog box: select 'Rational' solution	
b. Factorising polynomials over R Find the factors of $x^{4}-9$ over the Real field	Enter $2 x^{\wedge} 4-3 x^{\wedge} \wedge-3 x-2$ Simplify menu: select 'Factor' Dialog box: select 'Radical' solution	
c. Factorising polynomials over C Find the factors of $x^{4}-9$ over the Complex field	Highlight $2 x^{\wedge} 4-3 x^{\wedge} \wedge-3 x-2$ Simplify menu: select 'Factor' Dialog box: select 'Complex' solution	
d. Common Denominator Express $x+2+\frac{2}{x+1}$ with a common denominator	Enter $x+2+2 /(x+1))$ Simplify menu: select 'Factor' (rational) Dialog box: click FACTOR	

An Introduction to Derive

e. Partial fractions	Enter 3/(x+1)+5/(x-2)	
Express the partial fractions	Simplify menu: select 'Factor' (rational)	
$\frac{3}{x+1}+\frac{5}{x-2}$ as a single expression	Dialog box: click FACTOR	

5. CAS functionality: EXPAND

Years 7 to 10 examples

Task	Derive 5 steps	Answer
a. Binomial expansion Expand 2(3x-5)	Enter 2(3x-5) Simplify menu: select 'expand'	
b. Write as the sum of two fractions Express $\frac{2 a^{2}+3 b}{5 a b^{2}}$ as the sum of two fractions	$\left(2 a^{\wedge 2+3 b) /(5 a * ~} \boldsymbol{b}^{\wedge 2)}\right.$ Simplify menu: select 'Expand'	
c. Expanding 3 factors Expand $(2 \mathrm{x}+\mathrm{y})(\mathrm{x}-3 \mathrm{y})(\mathrm{x}+2 \mathrm{y})$	Enter (2x+y)(x-3y)(x+2y) Simplify menu: select 'Expand'	

6. CAS functionality: EXPAND

Years 11 \& 12 examples

Task	Derive 5 steps	Answer
a. Binomial expansion Expand $\left(3 x-\frac{5}{x^{2}}\right)^{6}$	Enter (3x-5/($\left.\wedge^{\wedge}\right)^{\wedge}$ ^6 Simplify menu: select 'expand' (Rational)	
b. Polynomial division Express $\frac{x^{2}+5 x+6}{x+1}$ as the sum of a quotient and remainder.	Enter $\left(x^{\wedge 2+5 x+6) /(x+1)}\right.$ Simplify menu: select 'Expand' (Rational)	
c. Expanding trig expressions Expand $\sin (2 x)$	"Declare" Menu. Select "Simplification settings" Dialog box: Trigonometry: Expand. OK Type expand(sin(2x)).	

7. CAS functionality: DEFINE

Task	Derive 5 steps	Answer
	Type $f(x):=x \wedge 2$. $\boldsymbol{O R}$, ‘Declare’ menu: ‘Function definition’. In dialog box: function name \& argument: $f(x)$ Function definition: $x^{\wedge 2}$ Then $f(-5) \quad$ or type " $f(-5)=$ " [Enter] Then $\boldsymbol{f}(\boldsymbol{x}+\boldsymbol{h}) \quad$ or type $" f(x+\boldsymbol{h})="$ [Enter]	
b. Define $g(x)=\sin (x)$	Type $g(x):=\sin (x)$ ENTER]. Then $-2 \mathrm{~g}(\mathrm{x})$, Then	

An Introduction to Derive

Evaluate $-\mathbf{g}(\boldsymbol{x})$	$g(x+\pi / 2)$. To graph: "Window" menu: Tile vertically. Evaluate $\boldsymbol{g}\left(\boldsymbol{x}+\frac{\pi}{2}\right)$	Highlight the expression. Click the graph icon in the Graph window. Done.

8. CAS functionality: GRAPH

a) Basic graphing

Task	Derive 5 steps
a. Define $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{2}$ Graph $\boldsymbol{f}(\boldsymbol{x})$ and embed the graph in the Algebra sheet.	Type $\boldsymbol{f}(x):=x^{\wedge 2}$ to define the function. To graph: With the expression highlighted, Click "2-D graph" icon. This opens the graph window. Now click the 2D plot icon in the graph window menu bar. To see the Algebra window and graph side-by-side, go to the "Window" menu. Select: "Tile vertically". To embed graph: Click anywhere in the graph window, to select it. From the "File" menu select "Embed". See how it works. Close the graph window (click [\times]). Double click on the embedded graph. The graph will reappear in the 2D graph window.
$6>$ Derive 5	
\| File Edit Insert Set Options window Help Trace	
2D-plot 1:1 Insert Annotation	
b) More on 2D graphs	
Task	Derive 5 steps
b. On the same set of axes, graph	In the algebra window, r the expression (eg $2 f(x)$) and click
i) $\quad f(x)$	With the expressions higmimghted, select the graph window
$\begin{array}{ll}\text { ii) } & 2 f(x)) \\ \text { iii) } & f(x+1)\end{array}$	and dick the 2D fraph icon.
iii) $\quad f(x+1)$	Annotate the graphs. Click the "Insert Annotation" button and
iv) $\quad f(x-2)$ v) $\quad f(x)-2$	annotate the graphs. Zoom in and out on the graphs.

9. CAS functionality: CALCULUS menu - a Year 7 - 10 applications.

Task	Derive 5 steps	Answer
a. Find the partial sums of the areas shades. What is the total area shaded?	Finding partial sums Each term is of the form $\frac{1}{4^{n}}$. Entering $\sum_{n=1}^{a} \frac{1}{4^{n}}$: Enter $1 / 4 \wedge$ n. From the "Calculus" menu and select "Sum", or click the [Σ] toolbar button. Set the lower limit at 1 and upper limit at a. Click simplify. Obtaining a table of partial sums for $\mathrm{a}=1$ to $\mathrm{a}=12$ With $\sum_{n=1}^{a} \frac{1}{4^{n}}$ highlighted, go to the "Calculus" menu and select "Table". Set "starting value" at 1, end value at 12. Click "Simplify". The partial sums will be given as exact fractions. Click the [\approx]	

田	toolbar button to obtain the table with approximate decimal values. Converging to what yalue? Right-mouse click on $\sum_{n=1}^{v} \frac{1}{4^{n}}$. Select "Copy", the paste into the entry line and replace a with ∞ (from bottom toolbar) then .

Part 2: Some classroom activities

Activity 1
 Exploring Patterns: Binomial coefficients \& Pascal's Triangle

Aim: To investigate the expansion of $(\boldsymbol{a}+\boldsymbol{b})^{\boldsymbol{n}}$, where n is a positive integer and $n \in[0,10]$.

1. Open an DERIVE worksheet
2. Type $(\mathbf{a}+\mathbf{b})^{\wedge} \mathbf{n}$, in the "entry \langle ine".
3. Press ENTER. The exproccinn will appear in the "Algebra 2-D Graph
4. With expression \#1 highmgrrya, ocreer "expand" from the Simplify menu.
5. In the dialog box, select: variables a $\& b$ and "Rational" factors. Click OK.
To obtain a table showing the expansion of $(a+b)^{0}$ to $(a+b)^{10}$:
6. With line \#2 highlighted, select "Table" from the
7. In the dialog box,
 starting value $=0$, ending value $=10$ and step size $=1$. Click OK.
8. Click the [=] simplify toolbar button.

Questions.

- In the expansions of $(\boldsymbol{a}+\boldsymbol{b})^{\boldsymbol{n}}$, what patterns do you observe in the:
a. powers of a and b
b. coefficients (e.g. $a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$ has coefficients $1,3,3,1$)
- From the patterns that you have observed, write the expansion of $(a+b)^{11}$. Use DERIVE to check your answer.

Activity 2

Graphing and solving in implicit form
Aim: To investigate the graphs and points of intersection of $x^{2}+y^{2}=9$ and $y^{2}=x+3$

Solving the system of equations $x^{2}+y^{2}=9$ and $y^{2}=x+3$
9. Select the Algebra window by clicking anywhere in the Algebra window area.
10. Go to the Solve menu and select "System" (to solve a system of equations).
11. In the dialog box, select " 2 " equations. OK.
12. In the next dialog box enter \#1and \#2. OK.
13. To obtain an exact solution set, click [$=]$
14. To obtain rational approximations, click [\approx]
15. The number of significant figures in the rational approximation, can be changed through the "Declare" menu: Declare>Output

Activity 3

Differentiation from first principles
Aim: To investigate derivatives of for the family of polynomial power functions $f(x)=a x^{n}$, from first principles, for $\mathrm{n} \in[0,10$]

1. Define $\mathrm{f}(\mathrm{x})$ as $a x^{n}$. Go to the Declare mentu
2. In the dialog box: function name ... is $f($
3. Function definition is $a x^{\wedge}$ n.

Now enter $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ as follows:
4. Type: $(f(x+h)-f(x)) / h$ in the entry line. Press Enter.
5. Click the lim toolbar button. (Or select limit from the Calculus menu).
6. In the dialog box select: variable is h, limit point is 0 and approach from is both left and right. OK.
Now obtain a table of the derivatives for $\mathrm{n}=0$ to $\mathrm{n}=10$
7. Select Table from the Calculus menu.
9. In the dialog box, select: variable $=n$, starting value $=0$, ending value $=10$ and step size $=1$.
 Click OK.
10. Click the [=] simplify toolbar button.

Questions.

- For $f(x)=a x^{n}$, what patterns do you observe in $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$?
- From the patterns that you have observed, write the derivative of :
a. $f(x)=a x^{11}$
b. $f(x)=5 x^{12}$
c. $f(x)=5$

Activity 4
 Integral Calculus

Aim: To investigate the integral $\int_{-2}^{1.5}\left(x^{3}+2 x^{2}-3 x\right) d x$ and the area bounded by the graph of $f(x)=$ and the x-axis, for $-2 \leq x \leq 1.5$.

1. Open a new DERIVE worksheet Evaluate $\int_{-2}^{1.5}\left(x^{3}+2 x^{2}-3 x\right) d x$ as follows:
2. Type $x^{\wedge} 3+2 x^{\wedge} 2-3 x$, then ENTER.
3. Click the integral $\left[\int\right]$ toolbar button
4. In the dialog box: variable is x, Integral is Definite, upper limit is 1.5 and lower limit is -2 . Click OK.
5. Click [=]. Then click [\approx] for approx.

To obtain a 2-D plot window, showing the region bounded by the graph of $f(x)=x^{3}+2 x^{2}-3 x$ and the x axis, for $-2 \leq x \leq 1.5$, beside the algebra window:
6. Click the 2 -D plot toolbar button.
7. Select Tile vertically from the Window menu.
8. Type Plotint(\#1,x,-2,1.5) in the entry line. Press Enter. Click [=] toolbar button.
9. With expression \#6 highlighted, select the 2-D plot window (by clicking in the window).
10. Click the plot expression toolbar button.

Questions.

- The value of $\int_{-2}^{1.5}\left(x^{3}+2 x^{2}-3 x\right) d x \approx 7.47$. Why is the area bounded by the graph of $f(x)=x^{3}+2 x^{2}-3 x$ and the x-axis, for $-2 \leq x \leq 1.5$, not equal to 7.47 ?
- In fact, area is equal to 8.64 (to 2 decimal places). Write an expression to calculate the shaded area. Use DERIVE to find the exact area.

Activity 5

Solving Trigonometric Equations
Aim: To investigate solution to $2 \sin \left(\theta-\frac{\pi}{6}\right)=1$, for different domains.

1. Enter, in the entry line. Press enter.

Ele Edt Irsert Author Smpify Solve Solucus Dectare eptions window Help

2. Click the Solve Expression oolbar button (or select Expression from the Solve menu)
3. In the dialog box: variable is θ, solution method is algebraic, solution domain is real. OK. [=].

Questions

- Use the answer provided by DERIVE to solve π over the following:
a. $-\pi \leq \theta \leq \pi$
b. $0 \leq \theta \leq 2 \pi$
c. $-2 \pi \leq \theta \leq 0$
d.

