

Part 1: Familiarisation with the software

🚣 Derive 5 - [Algebra 1]
Eile Edit Insert Author Simplify Solve Calculus Declare Options Window Help
$\square \cong \blacksquare \circledast \stackrel{*}{\Rightarrow} \square \circledast \stackrel{*}{\Rightarrow} \square \Re \otimes \square \times \stackrel{m}{?} \stackrel{m}{?} \stackrel{m}{?} = \approx \mathbb{Q} Su_{B} \lim \partial J \Sigma \Pi \stackrel{q}{\rightarrow} \overset{*}{\times} \stackrel{\mathbf{?}}{?} $
SOLVE
1. CAS functionality: SOLVE expression

1. CAS functionality: **SOLVE** Years 7 to 10 examples

Task	Derive 5 steps	Answer
a. Algebraic solve	Enter $10a + 2 = 15a - 1$	
Solve $10a + 2 = 15a - 1$ for <i>a</i>	Solve menu: select 'Expression'	
	Dialog box should show	
	Variable: a, algebraic & real solution	
	Click the "Solve" button	
	[or type solve $(10a + 2 = 15a - 1, a)$]	
b. Rearranging a literal equation	Enter $e = m \times c^2$	
Rearrange $E = mc^2$ to make <i>m</i> the	Solve menu: select 'Expression'	
subject	Dialog box: Variable: m, algebraic	
	[or Type solve($e = m \times c^2, m$)]	
c. Rearranging a literal equation	Edit the entry line to	
Rearrange $E = mc^2$ to make c the	$solve(e = m \times c^2, c)$	
subject		
d. Solve the simultaneous equations	Solve Menu: select 'System'	
y = 4x - 5 and $2x + 3y = 8$	Dialog box: 2 equations OK	
	Dialog box: Enter equations:	
	y = 4x - 5 & 2x + 3y = 8. SOLVE	

2. CAS functionality: SOLVE Years 11 & 12 examples

Task	Derive 5 steps	Answer
a. Algebraic solve		
Solve $x^2 + 7x - 3 = -2x - 5$ for x	Enter $x^2 + 7x - 3 = -2x - 5$	
	Solve menu: select 'Expression'	
	Dialog box should show	
	Variable: x, algebraic & real solution. <i>Click "Solve"</i>	

	[or Type solve($x^2 + 7x - 3 = -2x - 5$, real, x)]	
b. Solving literal equations	Enter $ax^2 + bx + c = 0$	
Find the general solution of the	Solve menu: select 'Expression'	
quadratic expression	Dialog box: Variable: x, algebraic, real	
$ax^2 + bx + c = 0$ for the variable x.	[or Type solve($ax^2 + bx + c = 0, x$)]	
c. Find the general solution of the	Edit the entry line to	
quadratic function	$solve(ax^2 + bx + c = 0, b)$	
$ax^2 + bx + c = 0$ wrt parameter b.		
d. Solve the simultaneous equations	Solve Menu: select 'System'	
$x^{2} + y^{2} = 9$ and $y^{2} = x + 3$	Dialog box: 2 equations OK	
NOTE: Derive 5 accepts equations in	Dialog box: Enter equations:	
implicit form.	$x^{2} + y^{2} = 9$ and $y^{2} = x + 3$. Click "SOLVE"	
📣 Derive 5 - [Algebra 1]		

Eile Edit Insert Author	Simplify Solve Calculus Declare	Options <u>W</u> indow	Help
🗅 🚅 🔚 🎒 👗 🖻 I	= <u>B</u> asic	Ctrl+B	∂ ∫ΣΠ → 🟃 🦻
<u>11 '</u>	<u>E</u> xpand	Ctrl+E	
#1: 50220	<u>F</u> actor	Ctrl+F	
	Approximate	Ctrl+G	
	Su_{B} <u>V</u> ariable Substitution	Ctrl+W	
1	Subexpression Substitution	Ctrl+T	

3. CAS functionality: FACTOR

Years 7 to 10 examples

Task	Derive 5 steps	Answer
a. Prime factors	Enter 50220	
Find the prime factors of 50220	Simplify menu: select 'Factor'	
	Dialog box: click FACTOR	
b. Lowest Common Denominator	Enter $1/a - 1/b$	
Express $1/a + 1/b$ with a common	Simplify menu: select 'Factor'	
denominator	Dialog box: click FACTOR button	
c. Common factors	Edit the enty line to <i>factor</i> (8ab + 12ac)	
Factorise 8ab + 12ac		
d. Patterns with quadratic factors	Enter <i>a</i> ^2 - <i>b</i> ^2	
Factorise $a^2 - b^2$	Simplify menu: select 'Factor'	
$4c^2-9d^2$	Dialog box: click FACTOR button	
$b^2 - a^2$	Edit entry line to $factor(4c^2 - 9d^2)$	
	Edit entry line to $factor(b^2 - a^2)$ etc	

4. CAS functionality: **FACTOR** (Years 11 & 12 examples)

Task	Derive 5 steps	Answer
a. Factorising polynomials over Q	Enter $2x^4 - 3x^3 - 3x - 2$	
Find the factors of	Simplify menu: select 'Factor'	
x^4 - 9 over the Rational field	Dialog box: select 'Rational' solution	
b. Factorising polynomials over R	Enter $2x^4 - 3x^3 - 3x - 2$	
Find the factors of	Simplify menu: select 'Factor'	
x^4 - 9 over the Real field	Dialog box: select 'Radical' solution	
c. Factorising polynomials over C	Highlight $2x^4 - 3x^3 - 3x - 2$	
Find the factors of	Simplify menu: select 'Factor'	
x^4 - 9 over the Complex field	Dialog box: select 'Complex' solution	
d. Common Denominator	Enter $x+2+2/(x+1)$)	
2	Simplify menu: select 'Factor' (rational)	
Express $x + 2 + \frac{2}{x+1}$ with a	Dialog box: click FACTOR	
common denominator		

e. Partial fractions	Enter $3/(x+1)+5/(x-2)$	
Express the partial fractions	Simplify menu: select 'Factor' (rational)	
3 5	Dialog box: click FACTOR	
$\frac{x}{x+1} + \frac{x}{x-2}$ as a single expression		

👍 Derive 5 - [Algebra 1]

Eile Edit Insert Author	Simplify Solve Calculus Declare	Options <u>W</u> indow	Help
🛛 🗅 🚅 🖬 🎒 🖌 🖻	= <u>B</u> asic	Ctrl+B	∂∫ΣΠ → 氷 ?
	<u>E</u> xpand	Ctrl+E	
#1: $2 \cdot (3 \cdot x - 5)$	Eactor	Ctrl+F	
	Approximate	Ctrl+G	
	Su _B Variable Substitution	Ctrl+W	
	Subexpression Substitution	Ctrl+T	

5. CAS functionality: **EXPAND**

Years 7 to 10 examples

Task	Derive 5 steps	Answer
a. Binomial expansion		
Expand $2(3x-5)$	Enter $2(3x - 5)$	
	Simplify menu: select 'expand'	
b. Write as the sum of two fractions	$(2a^{2}+3b)/(5a^{*}b^{2})$	
Express $\frac{2a^2 + 3b}{5ab^2}$ as the sum of two	Simplify menu: select 'Expand'	
fractions		
c. Expanding 3 factors	Enter $(2x + y)(x - 3y)(x + 2y)$	
Expand $(2x + y)(x - 3y)(x + 2y)$	Simplify menu: select 'Expand'	

6. CAS functionality: **EXPAND**

Years 11 & 12 examples

Task	Derive 5 steps	Answer
a. Binomial expansion	Enter $(3x - 5/x^2)^{6}$	
Expand $(3x - \frac{5}{x^2})^6$	Simplify menu: select 'expand' (Rational)	
b. Polynomial division	Enter $(x^{2+5x+6})/(x+1)$	
Express $\frac{x^2 + 5x + 6}{x + 1}$ as the sum of a	Simplify menu: select 'Expand' (Rational)	
quotient and remainder.		
c. Expanding trig expressions	"Declare" Menu.	
Expand <i>sin(2x)</i>	Select "Simplification settings"	
	Dialog box: Trigonometry: Expand. OK	
	Type expand(sin(2x)).	

7. CAS functionality: **DEFINE**

Task	Derive 5 steps	Answer
a. Define $f(\overline{} = x^2$ Evaluate $f(\overline{})$	Type $f(x):=x^2$. OR , 'Declare' menu: 'Function definition'.In dialog box: function name & argument: $f(x)$ Function definition: x^2 Then $f(-5)$ or type " $f(-5)=$ " [Enter]Then $f(x + h)$ or type " $f(x + h)=$ " [Enter]	
b. Define $g(x) = \sin(x)$	<i>Type</i> $g(x)$:= $sin(x)$ ENTER. Then $-2g(x)$, Then	

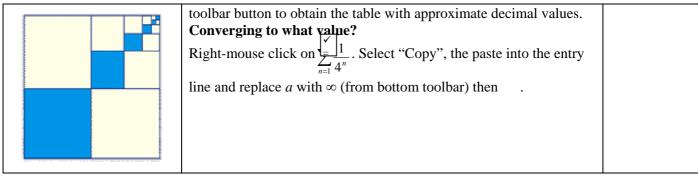
Evaluate $-2g(x)$	$g(x + \pi/2).$	
Evaluate $g(x+\frac{\pi}{2})$	To graph: "Window" menu: Tile vertically. Highlight the expression. Click the graph icon in the Graph window. Done.	

🐴 Derive 5 - [Algebra 1]	
File Edit Insert Author Simplify Solve Calculus Declare Options W	(indow <u>H</u> elp
🗅 🚅 🖬 🎒 👗 🖻 🛍 🗙 💇 🕎 🚥 [:::] = 🛪 🔍 Sug	
#1: $\frac{f(x) := x}{f(x) := x}$	Opens 2D graph 2D-plot window

8. CAS functionality: GRAPH

a) Basic graphing

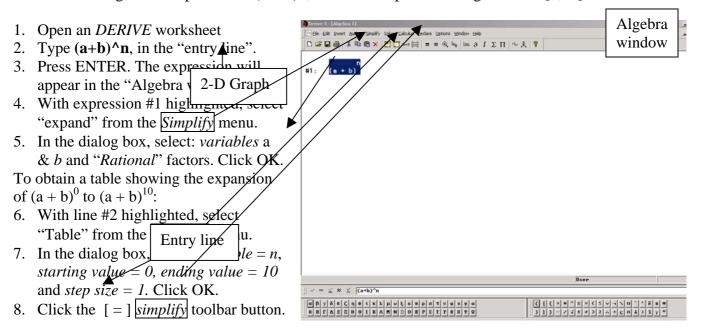
Task	Derive 5 steps		
a. Define $f(x) = x^2$	<i>Type</i> $f(x)$:= x^2 to define the function.		
Graph $f(x)$ and embed the graph in	To graph: With the expression highlighted, Click "2-D graph" icon.		
the Algebra sheet.	This opens the graph window. Now click the 2D plot icon in the graph		
	window menu bar.		
	To see the Algebra window and graph side-by-side, go to the		
	"Window" menu. Select: "Tile vertically".		
	To embed graph: Click anywhere in the graph window, to select it.		
	From the "File" menu select "Embed".		
	See how it works. Close the graph window (click [×]). Double click on		
	the embedded graph. The graph will reappear in the 2D graph window.		
A Derive 5			
\prod Eile Edit Insert Set Options Win	dow Help Trace		
∬ D 🛎 🖬 🚭 🛍 ↔ 🗙 💆	Ĩ│ ~ └ + ⊕ ↔ ┆ ↔ ┿ ┆ →		
2D-plot 1:1	Insert Annotation		
	Zoom Out Zoom In		


b) More on 2D graphs

b) which on 2D graphs	
Task	Derive 5 steps
b. On the same set of axes, graph	In the algebra window, e^{f} r the expression (eg $2f(x)$) and click
i) <i>f(x)</i>	With the expressions highinghted, select the graph window
ii) $2f(x)$)	and click the 2D graph icon.
iii) $f(x+1)$	Annotate the graphs. Click the "Insert Annotation" button and
iv) $f(x-2)$	annotate the graphs.
v) $f(x) - 2$	Zoom in and out on the graphs.

◀

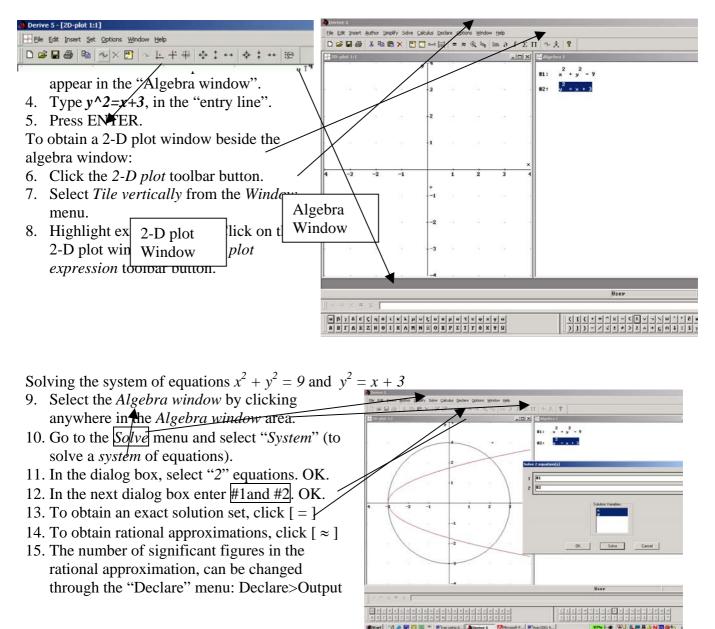
9. CAS functionality: CALCULUS menu - a Year 7 – 10 applications.


Task	Derive 5 steps	Answer
a. Find the partial sums of	Finding partial sums	
the areas shades. What is the total area shaded?	Each term is of the form $\frac{1}{4^n}$. Entering $\sum_{n=1}^{a} \frac{1}{4^n}$:	
	Enter 1/4 ⁿ . From the "Calculus" menu and select "Sum", or click	
	the [Σ] toolbar button. Set the lower limit at 1 and upper limit at <i>a</i> .	
	Click simplify.	
	Obtaining a table of partial sums for a =1 to a = 12	
	With $\sum_{n=1}^{a} \frac{1}{4^{n}}$ highlighted, go to the "Calculus" menu and select	
	"Table". Set "starting value" at 1, end value at 12. Click "Simplify".	
	The partial sums will be given as exact fractions. Click the $[\approx]$	

Part 2: Some classroom activities

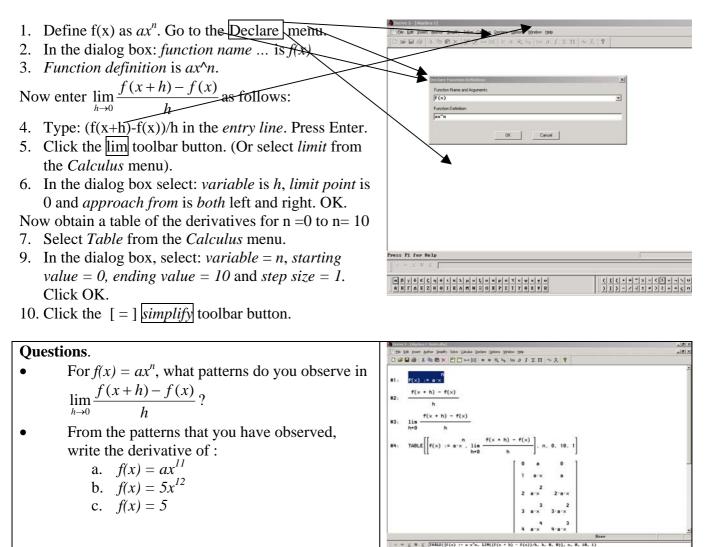
Activity 1 Exploring Patterns: Binomial coefficients & Pascal's Triangle

Aim: To investigate the expansion of $(a + b)^n$, where *n* is a positive integer and $n \in [0, 10]$.



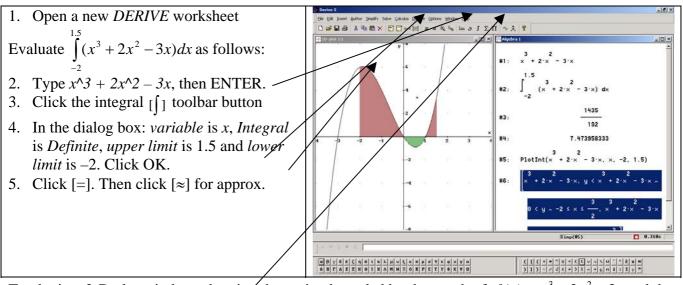
Questions.

- In the expansions of $(a + b)^n$, what patterns do you observe in the:
 - a. powers of a and b
 - b. coefficients (e.g. $a^3 + 3a^2b + 3ab^2 + b^3$ has coefficients 1, 3, 3, 1)
- From the patterns that you have observed, write the expansion of $(a + b)^{11}$. Use DERIVE to check your answer.


Activity 2 Graphing and solving in implicit form

Aim: To investigate the graphs and points of intersection of $x^2 + y^2 = 9$ and $y^2 = x + 3$

Activity 3 Differentiation from first principles


Aim: To investigate derivatives of for the family of polynomial power functions $f(x) = ax^n$, from first principles, for $n \in [0, 10]$

Activity 4 Integral Calculus

Aim: To investigate the integral $\int_{-2}^{1.5} (x^3 + 2x^2 - 3x) dx$ and the area bounded by the graph of f(x) = and the x-axis, for $-2 \le x \le 1.5$.

 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m
 m

To obtain a 2-D plot window, showing the region bounded by the graph of $f(x) = x^3 + 2x^2 - 3x$ and the x-axis, for $-2 \le x \le 1.5$, beside the algebra window:

- 6. Click the 2-D plot toolbar button.
- 7. Select *Tile vertically* from the *Window* menu.
- 8. Type *Plotint(#1,x,-2,1.5)* in the *entry line*. Press Enter. Click [=] toolbar button.
- 9. With expression #6 highlighted, select the 2-D plot window (by clicking in the window).
- 10. Click the *plot expression* toolbar button.

Questions.

• The value of $\int_{-2}^{1.5} (x^3 + 2x^2 - 3x) dx \approx 7.47$. Why is the area bounded by the graph of

 $f(x) = x^3 + 2x^2 - 3x$ and the x-axis, for $-2 \le x \le 1.5$, not equal to 7.47?

• In fact, area is equal to 8.64 (to 2 decimal places). Write an expression to calculate the shaded area. Use DERIVE to find the exact area.

Activity 5 Solving Trigonometric Equations

Aim: To investigate solution to $2\sin(\theta - \frac{\pi}{6}) = 1$, for different domains.

- 2. Click the *Solve Expression* toolbar button (or select *Expression* from the *Solve* menu)
- 3. In the dialog box: variable is θ , solution method is algebraic, solution domain is real. OK. [=]. **Questions**
- Use the answer provided by DERIVE to solve π over the following:
- a. $-\pi \le \theta \le \pi$ b. $0 \le \theta \le 2\pi$ c. $-2\pi \le \theta \le 0$ d.