# Squares and Cubes

## **Student Activity**

7 8 9 10 11 12

# Introduction

How much mathematics can we see in a diagram?

The diagram shown opposite is a powerful example of the visual representation of a mathematical relationship. The diagram shows a series of squares with successively increasing area and frequency. Notice that in some cases there is a small overlap between the squares and that this overlap would exactly fill the corresponding empty space. An animated version of this diagram is available on the TI-Nspire file. Study the diagram and then answer the questions.

# **Visual Representation**

Open the TI-Nspire document "Squares and Cubes".

Navigate to page: 1.2 and use the **show** slider to reveal more or less of the image.

Think about the different ways of expressing the total area of this shape. In the image shown opposite the 2 x 2 squares overlap. The total area of the shape is the combination of the 1 x 1 square and two of the 2 x 2 squares for a total area:

1 + 4 + 4 = 9 units<sup>2</sup>.

## Question: 1.

Change the slider to reveal more of the shape making the third set of squares visible; then answer the following questions:

- a) Imagine you had some red, green and yellow paper and had to cut out the corresponding squares. Describe the colour, size and quantity of each group of squares.
- b) Calculate the total area of the squares in part (a) by adding up all the component shapes. (Show working)
- c) Using the overall dimensions of the shape to calculate the total area. (Show working)

| <ul> <li>【 1.2 【 1.3 【 1.4 】 *sum squar…bes 		</li> </ul> | DEG 🚺 🗙 |
|-----------------------------------------------------------|---------|
| less <> more                                              |         |
| 1 2                                                       |         |
|                                                           |         |
|                                                           |         |
|                                                           |         |
|                                                           |         |
|                                                           |         |
|                                                           |         |







30 min

Student



<sup>©</sup> Texas Instruments 2014. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

### Question: 2.

Change the slider to reveal more of the shape making the fourth set of squares visible; then answer the following questions:

- a) Imagine you had some red, green, yellow and blue paper and had to cut out the corresponding squares. Describe the colour, size and quantity of each group of squares.
- b) Calculate the total area of the squares in part (a) by adding up all the component shapes. (Show working)
- c) Using the overall dimensions of the shape to calculate the total area. (Show working)

#### Question: 3.

Draw a diagram of shape 5, the next one in the sequence, and determine the total area using both techniques.

# **Numerical Representation**

Navigate to page 2.1 and use the slider on the left hand side to adjust the value of n. Observe the two expressions as *n* is changed.



#### Question: 4.

Explain how the two mathematical expressions relate to the original diagram.

Navigate to page 2.2, this is a calculator application.

A sequence of numbers can be generated by the rule:

$$x^3$$
 where  $x \in \{1, 2, 3...n\}$ 

To see how this 'rule' works, enter the rule in the calculator (shown opposite) including the substitution for the number set:

The '|' symbol can be found by pressing [Ctrl] + [ = ]

#### Question: 5.

Write down the set of numbers produced.

#### Question: 6.

Calculate the sum of these numbers. Hint: Type **sum(** then copy and paste the previous answer.

| 1.2 2.1              | 2.2 🕨 *su   | ım squarbes 🗢                        | RAD 🚺 🗙 |
|----------------------|-------------|--------------------------------------|---------|
| © Type in            | the express | $\sin x^3   x = \{1, 2, \ldots, n\}$ | ,3,4}   |
| $x^{3} x = \{1, 2\}$ | 2,3,4}      |                                      |         |
|                      |             |                                      |         |
|                      |             |                                      |         |
|                      |             |                                      |         |

© Texas Instruments 2014. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.



Another way to produce a set of numbers and add them in a single step is to use the mathematical summation tool, sigma.

$$\sum_{start}^{finish} rule$$

Navigate to page 3.1

The summation template can be found in the template fly-out or by selecting 'sum' from the calculus menu. The rule being used in this example has the variable *x*. So the sum of the first 4 integers cubed would look like this:

Start: *x* = 1 -- *initial value used by the rule* 

Finish: 4 -- final value used by the rule

Rule:  $x^3$  -- rule used to generate the numbers

Expression:  $\sum_{i=1}^{4} x^{3}$ 





#### Question: 7.

Determine the sum of the first 5 numbers cubed. Include the sigma notation and expression in the answer.

#### Question: 8.

Determine the sum of the first 5 numbers and then square the result. Include the sigma notation and expression, note that appropriate placement of the squared sign will allow for this calculation to be executed in a single line.

#### **Question: 9.**

Determine the sum of the first 10 cubed integers and compare this with the sum of the first 10 integers and square the result.

#### Question: 10.

Write down an algebraic rule from the sigma notation:  $\sum_{n=1}^{x} n^{3}$  and compare this with  $\sum_{n=1}^{x} n$ 

## Question: 11.

Use induction to prove that  $(1+2+3...n)^2 = 1^3 + 2^3 + 3^3...n^3$ Step 1 – Show true for n = 1Step 2 – Assume true for n (ie rule above) Step 3 – Show true for n + 1[Hint: It may be useful to know the rule for the sum of the first n integers.]





