Activity

Graph the lines $y=x+4$ and $y=x-2$.

1. Press $Y=$, and enter $\mathbf{X}+\mathbf{4}$ for $\mathbf{Y} 1$ and $\mathbf{X}-\mathbf{2}$ for $\mathbf{Y} 2$. Graph the functions in the square window by pressing Zoom and choosing 5 : ZSquare.
2. Identify the x-intercept of each line. The x-intercepts are -4 and 2 .
3. Find the x-value halfway between the two x-intercepts. This x-value is the average of the x-intercepts: $\frac{-4+2}{2}=-1$.

Graph the quadratic function $y=(x+4)(x-2)$, which is the product of the two linear factors graphed above.
4. Press $Y=$ and enter
$(X+4)(X-2)$ for $Y 3$.
Press GRAPH.

5. Identify the x-intercepts of the parabola. The x-intercepts are -4 and 2 . Notice that they are the same as those of the two linear factors.

6. Examine the parabola at $x=-1$ (the x-value that is halfway between the x-intercepts). The axis of symmetry and the vertex of the parabola occur at this x-value.

Try This

Graph each quadratic function and each of its linear factors. Then identify the x-intercepts and the axis of symmetry of each parabola.

1. $y=(x-2)(x-6)$
2. $y=(x+3)(x-1)$
3. $y=(x-5)(x+2)$
4. $y=(x+4)(x-4)$
5. $y=(x-5)(x-5)$
6. $y=(2 x-1)(2 x+3)$
7. Critical Thinking Use a graph to determine whether the quadratic function $y=2 x^{2}+5 x-12$ is the product of the linear factors $2 x-3$ and $x+4$.
8. Make a Conjecture Make a conjecture about the linear factors, x-intercepts, and axis of symmetry of a quadratic function.
