

Explore Graphs and Factors

You can use graphs and linear factors to find the *x*-intercepts of a parabola.

Use with Lesson 5-3

(2, 0)

Activity

Graph the lines y = x + 4 and y = x - 2.

- 1. Press Y=, and enter X+4 for Y1 and X-2 for Y2. Graph the functions in the square window by pressing 200M and choosing 5: ZSquare.
- **2.** Identify the *x*-intercept of each line. The *x*-intercepts are -4 and 2.
- **3.** Find the *x*-value halfway between the two *x*-intercepts. This *x*-value is the average of the *x*-intercepts: $\frac{-4+2}{2} = -1$.

Graph the quadratic function y = (x + 4)(x - 2), which is the product of the two linear factors graphed above.

5. Identify the *x*-intercepts of the parabola. The *x*-intercepts are -4 and 2. Notice that they are the same as those of the two linear factors.

6. Examine the parabola at x = -1 (the *x*-value that is halfway between the *x*-intercepts). The axis of symmetry and the vertex of the parabola occur at this

(-4, 0)

Graph each quadratic function and each of its linear factors. Then identify the x-intercepts and the axis of symmetry of each parabola.

1.
$$y = (x-2)(x-6)$$

2.
$$y = (x+3)(x-1)$$

3.
$$y = (x-5)(x+2)$$

x-value.

4.
$$y = (x+4)(x-4)$$

5.
$$y = (x - 5)(x - 5)$$

6.
$$y = (2x - 1)(2x + 3)$$

- **7. Critical Thinking** Use a graph to determine whether the quadratic function $y = 2x^2 + 5x 12$ is the product of the linear factors 2x 3 and x + 4.
- **8. Make a Conjecture** Make a conjecture about the linear factors, *x*-intercepts, and axis of symmetry of a quadratic function.