

MATH NSPIRED

Background

The purpose of this calculator file is to numerically investigate the limit of a sequence a_n as $n \to \infty$, and the sum of the series $\sum_{k=1}^{\infty} a_k$. Sliders are used to quickly examine the value of a_n for large values of n, and to consider partial sums of the form $\sum_{k=1}^{n} a_k$, also for large values of n.

Course and Exam Description

Unit 10: Infinite Sequences and Series

Calculator File

Sequences&Series.tns

Using the Document

Sequences&Series.tns: This calculator file provides a technology tool for investigating the limit of an

arbitrary sequence $\{a_n\}$ and whether an infinite series of the form $\sum_{k=1}^{n} a_k$ is convergent or divergent. A slider is used to display values of a_n and the partial sums $\sum_{k=1}^{n} a_k$ for various values of n. A table of these

values is automatically computed and displayed in a Lists and Spreadsheet page.

The default sequence is $a_n = \frac{1}{n^3}$ and the corresponding series is $\sum_{k=1}^{\infty} \frac{1}{k^3}$. The values for *n* used in this file are n = 1, 2, 3, 4, 5, 10, 100, 1000, 10000.

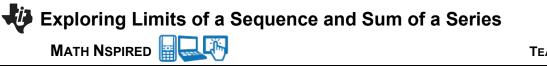
Page 1.1

- 8 -	
4 1.1 2.1 2.2 ▶ Sequenceies RAD XAD	This introductory screen provides information to help
Sequences & Series	utilize this tns file. The general term of the series $\{a_n\}$ is
Page 2.1: Define the general term $a(n)$ and	defined on the calculator as (a function) $a(n)$. A slider is
use the slider to display the terms $a(1)$, $a(2)$,	used to click through nine values of this sequence. On
a(3), a(4), a(5), a(10), a(100), a(1000), and	another calculator page, a similar slider is used to compute
a(10000). Page 2.2 displays the partial sums	n
n	the partial sums $\sum a_k$ for these same nine values of n .
$(\mathbf{a}(k))$ Page 2.3 displays a complete	k=1
k=1	A complete table of values is given on page 2.2
table of these values.	A complete table of values is given on page 2.3.
	1

Exploring Limits of a Sequence and Sum of a Series

MATH NSPIRED

Page 2.1


1.1 2.1 2.2 ▶ *Sequencies RAD	The sequence is defined in the Math Box at the top left
Define $\mathbf{a}(n) = \frac{1}{n^3} \cdot Done \lim_{n \to \infty} (\mathbf{a}(n)) =?$ n = 1 $\mathbf{a}(1) = 1$	portion of this Notes page. Remember to hit Enter after defining a new sequence. Use the slider for <i>n</i> to click, or scroll, through the preprogrammed values of <i>n</i> . The corresponding value for a_n is displayed in the middle of the screen. This numerical tool is designed to guess the limit $\lim_{n\to\infty} a_n$.

Page 2.2

This calculator page is used to investigate the partial sums
of the series $\sum_{k=1}^{\infty} a_k$. The Math Box in the top left portion of
this Notes page is used to define the terms of the
sequence $\{a_n\}$. This Math Box and the similar one on Page
2.1 are linked; the user can define the sequence on either
page. Use the slider for <i>n</i> (bottom left) to click, or scroll,
through the preprogrammed values of <i>n</i> . The
corresponding partial sums are displayed.

Page 2.3

◀ 2.	1 2.2 2.3	▶ *Sequen	c…ies RAD	$] \times$	This Lists and Spreadsheet page displays a complete table
=	A nlist	B nthterm	C nthsum D		of values for <i>n</i> , a_n , and $\sum_{k=1}^n a_k$. Note that some of the values
1	1	1	1		for a_n and $\sum_{k=1}^{n} a_k$ are presented in exact symbolic form. You might consider creating other columns in this Lists and
2	2	1/8	9/8		
з	3	1/27	251/216		
4	4	1/64	2035/1728		Spreadsheet page with all computed values presented as
5	5	1/125	256103/216000	-	decimal approximations.
C9	=1.202056	58981595	4	•	

Suggested Applications and Extensions

Find several values of each sequence. Use these values to conjecture if the sequence converges or diverges. If you think it converges, guess the limit.

1.
$$a_n = \frac{7-5n^2}{3+10n}$$

2. $a_n = \left(\frac{1}{e}\right)^n$
3. $a_n = \frac{n}{e^n}$
4. $a_n = \frac{\ln n}{n}$
5. $a_n = \frac{n^n}{n!}$
6. $a_n = \frac{\cos n}{n}$
7. $a_n = \left(3 + \frac{3}{n}\right)^n$
8. $a_n = \frac{\sin(n\pi)}{3^n}$
9. $a_n = \sqrt[n]{2^n + 3^n}$
10. $a_n = \tan^{-1}\left(\frac{-n^2}{n^2 - 7}\right)$
11. $a_n = \ln(n) - \ln(n+1)$
12. $a_n = e^{1/\sqrt{n}}$

Find several partial sums for each series. Use these values to guess whether the series is convergent or divergent.

1.
$$\sum_{n=1}^{\infty} \frac{5}{n^2 + n}$$

2.
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

3.
$$\sum_{n=1}^{\infty} \frac{1}{5n^2 - n + 3}$$

Exploring Limits of a Sequence and Sum of a Series

TEACHER NOTES

 $4. \qquad \sum_{n=1}^{\infty} \frac{n^2}{e^n}$

5.
$$\sum_{n=1}^{\infty} \frac{(\ln n)^2}{n^2}$$

- $6. \qquad \sum_{n=1}^{\infty} \frac{1}{n!}$
- 7. $\sum_{n=1}^{\infty} \cos n$

8.
$$\sum_{n=1}^{\infty} (-1)^{n-1} e^{3/n}$$

9. $\sum_{n=1}^{\infty} (-1)^n \frac{n^2}{2n^3 + n^2 - 7n + 5}$

10.
$$\sum_{n=1}^{\infty} \frac{\cos n}{n!}$$

Extended Application Questions

- Determine whether there is a relationship between series convergence and the terms of the corresponding sequence. Are there any general sequences {a_n} such that the corresponding series ∑a_n is guaranteed to converge? Diverge?
- 2. In those series that contain some terms that are positive and some terms that are negative, consider the series of the absolute value of each term, that is, $\sum_{n=1}^{\infty} |a_n|$. Is there a relationship between the convergence or divergence of $\sum_{n=1}^{\infty} |a_n|$ and the convergence or divergence of $\sum_{n=1}^{\infty} a_n$?