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Power Engineering This chapter shows how to handle phasor algebra, complex
power, power factor corrections, and unbalanced three-
phase calculations using the TI-89.

Topic 19:  Phasor Algebra

The sinusoidal, single-frequency voltages and currents of power systems are usually written as
phasors — complex numbers in magnitude and phase form. This form is particularly useful in
three-phase calculations when phasors must be added or subtracted. For Y-configurations, the
line-to-neutral voltages, van, vbn, and vcn, (often called the phase voltages) are combined to give
the line-to-line voltages, vac, vba, and vcb as shown in Figure 1.

vba

vcb

vac

vbn van

vcn

Figure 1.  Three-phase line and phase voltages

For a positive phase sequence, the phasor forms of the line to neutral voltages are given as

van = 110

vbn = van∠120° = 110∠120°

vcn = van∠240° = 110∠240° = 110∠-120°

A negative phase sequence gives the opposite signs for the phase angles.

C h a p t e r  5

Features Used

Í, abs( ), real( ), imag( ), 
conj( ) , <, =, NewProb, ’,
Program Editor, ¥#, 
expúlist( )

Setup
¥1, NewFold power, 
setMode( “ Angle ” ,“ Degree” ) 
setMode( “ Complex  Format ” ,
“ Polar” )
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1. Clear the TI-89 by pressing 2 ˆ 2:NewProb  ¸.

2. The function vphase( )  uses van and the sign of the phase
sequence to calculate the phase voltages (see screen 1).
Press O 7:Program Editor 3:Ne w, select 2:Function for
Type, and enter vphase  for Variable. Then type the
function lines as shown in screen 1.

See Tips and Generalizations for shortcuts on entering
functions.

(1)

Note :  To enter ∠, press 2 ’.

3. Calculate the phase voltages for van=110 with a positive
phase sequence. Return to the Home screen, and use
the function vphase( )  with arguments of 110 and 1 as
shown in screen 2.

Two entries are displayed in screen 2. The first entry
shows the returned answer; the second shows the
answer scrolled to display the right side.

(2)

4. For a negative phase sequence, use arguments of 110
and -1 (screen 3).

If different results are displayed, press 3 and set the
modes as shown in the Setup section.

(3)

5. Each line-to-line voltage is expressed as the phasor
difference of the two adjacent phase voltages, for
example, vac=van-vcn . The function phas2lin( )  returns
the line-to-line voltages in a list {vac, vba, vcb} for van
and the sign of the phase sequence.

Enter the function as shown in screen 4. The function
vphase( )  is used to calculate the phase voltages which
then are used to calculate and return the list of line
voltages.

(4)

6. To calculate the line-to-line voltages for a phase voltage
van=110 with a positive phase sequence, use phas2lin( )
with arguments of 110 and 1 (screen 5). Two entries are
displayed again to show the complete answer.

(5)
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7. Phase voltages are calculated from line-to-line voltages
as the difference of the adjacent line voltages, for
example, van=(vac-vba)/3. The function lin2phas( )  returns
the phase voltages given the line-to-line voltages and
the sign of the phase sequence.

Enter the function shown in screen 6. The vac line to
line voltage and phase sequence are used to calculate
van which is used to calculate the other two phase
voltages.

(6)

8. Screen 7 shows the calculation of the phase voltages for

vac=110 3∠30° and a positive phase sequence.

(7)

Topic 20:  Average Power

Instantaneous power is defined as p(t)=i(t)v(t) for real signals where i(t) is the current which
flows in the direction of the voltage drop across the element, v(t). p(t) varies with time as the
signal varies. On the other hand, the average power of many signals is constant and often a more
useful parameter. It is defined as
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where T is the period of the signal.

1. Set the Angle  mode to Radian .

2. To calculate the average power dissipated in a 1 kΩ
resistor with a voltage of v(t)=10sin(2π60t) V across it,
first calculate the current as shown in screen 8.

Since i=v/r, the current is i(t)=10sin(2π60t) (bottom of
screen 8). The period of this signal is calculated from
the relationship T=1/f=1/60 s.

(8)

3. Enter the average power, PAVG, as shown in screen 9.

2 < v c t d i c t d b t b 0 b 1 e 60 d e c 1 e
60 d

The average power is calculated as 1/20=50 mw.

(9)
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4. The average power dissipated in a 1 µF capacitor with a
voltage of v(t)=10sin(2π60t) V across it is calculated in
a similar way. However, for a capacitor i(t)=Cdv/dt. The
calculator can do the work of calculating the derivative
as well as the power. To do this, enter the three
expressions as shown in screen 10.

1 ^ · 6 § c
c 2 = v c t d b t d § i c t d

and
2 < v c t d i c t d b t b 0 b 1 e 60 d e c 1 e
60 d

The average power dissipated in a capacitor is always
zero!

Note : The integral entered before
can be copied to the entry line by
moving the cursor into the history
section with C, highlighting the
integral, and pressing ¸.

(10)

5. The integral calculation of power is valid when the
voltage and current are not so nicely related. For
example, consider an unusual device that has a periodic
pulse train voltage across it with one cycle defined with
the “when” function as shown on the top of screen 11.

½ when(  t 2 Â 0.01 b 10 b 2 d § v c t d

This device also has a sinusoidal current given by
i(t)=5sin(2π50t+π/4), as shown on the bottom of screen
11. These expressions are entered as voltage and
current.

(11)

6. Note that the two signals must be periodic with the
same period T=0.02 seconds. To graph the two signals
over one period, enter v(x) and i(x) in the Y= Editor
(screen 12).

(12)

7. Enter the graphing parameters in the Window Editor
screen as shown in screen 13.

(13)

8. Press ¥ % to display the results in the graph in
screen 14.

(14)
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9. The average power is found by using the same integral
over the period of 0.02 seconds. Return to the Home
screen, and enter this as shown in screen 15.

2 < v c t d p i c t d b t b 0 b 0.02 d e 0.02

Therefore, the average power dissipated in a device
with the square wave voltage and sinusoidal current is
9.00 W.

(15)

Topic 21:  Complex Power

For steady-state, sinusoidal signals with v(t)=vo sinωt and
i(t)=io sin(ωt-θ), the average power is calculated with the
integral as before where T=2π/ω.

1. Enter v(t) and i(t) as shown in screen 16.

(16)

Note:   To enter ω , press ¥ c
j w.

2. Find the average power as shown in screen 17.

¥ c j w e c 2 2 T d p 2 < v c t d p i c
t d b t b 0 b 2 2 T e ¥ c j w d

(17)

This form provides the basis for the common expression for average power

P
vo io

AVG =
2 2

cosθ

where θ is the angle by which the current lags the voltage. The terms ( / )vo 2  and ( / )io 2
are known as the root-mean-square (abbreviated as RMS) voltage and current, respectively.
RMS quantities are defined as the square root of the mean (or average) of the quantity
squared.

xrms

x t dt

T
t

T

= =
∫ 2

0

( )

3. Calculate the RMS voltage of v(t)=vo sin(ωt) as shown
in screen 18.

2 ] ¥ c j w e c 2 2 T d p 2 < v c t d
Z 2 b t b 0 b 2 2 T e ¥ c j w d d

The result shows that the RMS value of any sinusoidal

signal is 
2

2
 times its peak magnitude.

(18)
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When sinusoidal voltage and current are written in
phasor form, vo∠0 and io∠-θ, the average power is
given as PAVG=Real(vo*conj(io∠-θ))/2.

4. Calculate the average power for v(t)=vo sin(ωt) and
i(t)=io sin(ωt-θ) using the phasor method.

First enter the voltage phasor as shown in screen 19.

c vo e 2 ] 2 d 2 ’ 0 d § vphasor

(19)

5. Enter the current phasor (screen 20).

c io e 2 ] 2 d 2 ’ · ¥ Ï d § iphasor

(20)

6. Calculate the average power (screen 21).

½ real( vphasor  p ½ conj(  iphasor  d d

The results are identical with the time-domain
averaging.

(21)

This leads to the generalized concept of complex
power. The complex power, S, is defined as S=P+jQ
where the real part P is identical to average power and
is expressed in watts, the imaginary part Q is known as
reactive power expressed in VARs (volt-amperes
reactive), and the complex power S has units of VA
(volt-amperes). S is calculated by S=vo∠0*conj(io∠−θ ).
The average power is P=real(S); the reactive power is
Q=imag(S).

7. Find the reactive power as shown in screen 22.

½ imag(  vphasor  p ½ conj(  iphasor  d d

(22)

8. Calculation of the complex power for a load of
zz1 = 2-j3 Ω with a current iphasor1  = 20 A rms proceeds
as follows.

a.  First, enter the values of zz1 and iphasor1
(screen 23).

(23)
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b.  The voltage of the load is vphasor1 = iphasor1*zz1
and the complex power is
S1=vphasor1*conj(iphasor1) (screen 24).

c vphasor1  j p ½ conj(  iphasor1  d d
§ s1 2 Ë s1 ½ úRect

The calculation gives s1=800-j1200 VA.
(24)

Note :  To enter j = −1 , press

2 ).

Note : Two or more commands can
be entered on one line using the
colon (2 Ë) to separate them.

9. Calculation of the complex power associated with a
load given by zz2=3+j4 Ω with a voltage of
vphasor2=110 Vrms , applied across it proceeds as
follows.

a. Press 3 and change the Complex Format  mode to 
RECTANGULAR.

b. First enter zz2 and vphasor2  (screen 25).

(25)

c. The rms load current is vphasor2/zz2=iphasor2; the
complex power is S2 = vphasor2*conj(iphasor2).

Enter the complex power as shown in screen 26.

vphasor2  p ½ conj(  iphasor2  d § s2

The complex power is calculated as s2=1452+j1936
VA. The average power which does work or
produces heat in the 3 Ω resistive part of the load is
1452 W. The reactive power which represents the
rate of change of stored energy in the j4 Ω reactive
part of the load is 1936 VARs.

Note : setMode("Complex Format",
"Rectangular")  was used since the
rest of the examples are best
displayed in rectangular mode. This
can be set with 3 to minimize the
typing.

(26)

Topic 22:  Power Factor

Complex power S is supplied to a load. The real portion of the power, P, is available to do work or
produce heat; the imaginary portion of the power, Q, is unusable. The fraction of complex power
which is available to do work is given by the power factor

pf
al Power

Complex Power

P

S
= = =

Re
cosθ

For positive phase angles θ, the power factor is called leading; for negative phase angles, lagging.
Resistive loads have a unity power factor, that is, pf=1; reactive loads have a zero power factor.
The angle θ is the same angle as the impedance phase angle. Since Y=1/Z, the admittance phase
angle is the negative of the impedance phase angle and can be used to calculate the power factor
as well.

The complex power for the load zz1=2-j3 Ω in Topic 21 is s1=800-j1200 VARs.
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1. Find the power factor, pf1 (screen 27).

The power factor of pf1= 
2 13

13

⋅
is lagging since it is a

capacitive load, that is, the reactive component is
negative.

(27)

2. The complex power for the load zz2=3+j4 Ω in Topic 21
is s2=1452+j1936 VARs.

Screen 28 shows the power factor of pf2 = 3/5 is leading
for the inductive load.

(28)

Topic 23:  Power Factor Correction Using Impedances
Reduction of the reactive power improves the power factor which means that more of the power
generated by the electric utility can be sold. Therefore, rate incentives are offered for industrial
users to improve or “correct” their power factor. Most large users have a leading power due to the
inductive nature of motors. A leading power factor can be “corrected,” that is, brought closer to
unity, by adding capacitors in parallel. The capacitive susceptance, j2πfC, cancels part of the
inductive susceptance of the load, -jBL , and makes the angle θ smaller and the pf=cosθ closer to
unity. See Figure 2.

Figure 2.  Admittance triangle

The procedure for calculating the amount of parallel
capacitance needed to correct the power factor to unity for the
inductive load zz2=3+j4 Ω =5∠53.1° Ω (Topic 21) follows. This
load has pf2=cos(53.1°)=3/5=0.6 (Topic 22).

1. Convert the impedance to admittance, yy2=1/zz2= 3/25 -
j4/25 = 0.12-j0.16 S (top of screen 29).

2. The added parallel capacitive susceptance must cancel
the inductive susceptance so that j(0.16)=j2π(60)C
which gives C=424 µF (bottom of screen 29).

(29)

Note : Calculate the floating-point
result by pressing ¥ ‘.

Unity power factor is often prohibitively expensive to achieve so the rates are set to offer incentive
for partial correction.

Repeat the last example for the load zz2=3+j4 Ω but with a final power factor of pf=0.9 leading
The load conductance does not change with the addition of the parallel capacitor. To obtain the
specified power factor, the added capacitive susceptance must result in a leading pf=0.9=cosθ so
that tanθ=tan(cos-1(0.9))  = -0.484.

GL

-θ
j2πfC

-jBLYL
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With the addition of the parallel capacitor, the total susceptance of the load is given as
btot=imag(yy2)+2π60c.

The ratio of imag(s)/real(s) =( imag(yy2)+2π60c) /real(yy2)=tanθ=tan(cos-1(0.9)).

Find the desired value of capacitance as shown in screen 30.

½ solve(  c ½ imag(  yy2 d « 2 2 T 60c d e
½ real( yy2  d Á · 2 Y ¥ R 0.9 d d b c d

The result is C=270 µF, somewhat less than that needed for
unity power factor and therefore less expensive.

(30)

Topic 24:  Power Factor Correction Using Power Triangle

Alternatively, power factor calculations can be made in terms of complex power as well, but these
calculations require the voltage or current.

To recalculate the parallel capacitance needed to bring the power factor to 0.9 leading when the
complex power is S2=1452+j1936 VA, recall that P=real(S) and Q=imag(S) (top of screen 31).
Some negative reactive power is introduced by the added parallel capacitance
pf=0.9=P/S=P/(P+j(Q-QCAP)).

1. Enter this as shown in screen 31.

½ solve(  0.9 Á p2 e c ½ abs( p2 « 2 )
c q2 | qcap  d d d b qcap  d

The complete answer is qcap=2639.24 or qcap  = 1232.76

(31)

2. Enter the second solution to obtain
QCAP=1232.8=2π60 C|v|2=2π60C(|vphasor2|)2.

½ expúlist(  2 ± b qcap  d § cs

and

½ solve( cs  2 g 1 2 h Á 2 2 T 60c p
½ abs( vphasor2  d Z 2 b c d

Screen 32 shows this leads to c=270 µF, as before.

Note that the second solution cs[2]=2639.2 gives a
power factor of 0.9, but lagging. Since this requires a
capacitor twice as large, it is not an economical
solution.

(32)

Note : expúlist(ans(1),qcap)  § cs is
used to convert the results of the first
solve into a list which is stored in cs.
cs[1]  uses the first solution to solve
for c.
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Topic 25:  Y- ∆ and ∆-Y Transformations
Many circuits are simplified by transforming a circuit from a Y configuration to a ∆ or a ∆
configuration to a Y as shown in Figure 3. The transformation is particularly useful in simplifying
circuits for later series-parallel combinations.

Figure 3.  ∆ and Y Configurations

The transformations are expressed as
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Since there are multiple inputs and multiple results, functions
work well to make these transformations.

1. Press O 7:Program Editor 3:New  and define the two
functions, delta2y( ) and y2delta ( ), to implement these
equations (screens 33 and 34).

(33)

(34)

2. Return to the Home screen, and use the delta2y( )
function to calculate the Y-configuration elements for a
delta-configured circuit with zaΩ =3+j, zb=5+j5Ω, and
zc=2-j4Ω as shown in the middle of screen 35.

delta2y  c 2 [ 3. « 2 ) b 5 « 2 ) 5 b 2 | 2
) 4 2 \ d

The delta2y( ) function gives the results z1=2.69-j1.54Ω,
z2=0.77-j1.15Ω, and z3=1.35+j1.73Ω (middle of
screen 35).

3. The inverse transformation, y2delta( ) , returns the
original impedance values (bottom of screen 35).

(35)
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Topic 26:  Unbalanced Three-Phase Systems

Solving balanced three-phase Y-systems is quite simple. Since all phases have the same sources
and loads, their voltages and currents differ from each other only by 120°. The solution for a single
phase is just shifted by ±120° to get the solutions for the other phases. Although the solutions are
more complicated for unbalanced three-phase Y-systems, they are easy with the TI-89’s matrix
operations.

Figure 4.  Unbalanced, three-phase circuit

The three-phase system of Figure 4 has a short-circuit across one phase. The currents can be
calculated by using Kirchhoff’s voltage law to write three mesh equations for the circuit.

i1(5.6 + j5.8) - i2(0.3 + j0.4) - i3(5.0 + j5.0) = 220 - (220∠M120)

-i1(0.3 + j0.4) + i2(5.6 + j5.8) - i3(5.0 + j5.0) = (220∠120) + (220∠M120)

-i1(5 + j5) - i2(5 + j5) + i3(10 + j10) = 0

In matrix form, the equations are
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1. Press 3. Then set Angle  mode to DEGREE and
Complex Format  mode to POLAR.

2. Create a new matrix variable. Press O 6:Data/Matrix
Editor 3:Ne w.  Select 2:Matrix  for Type, name the variable
unsymnet , and set the row and column dimensions to 3
(screen 36). Press ¸ to display the matrix. (36)
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3. Enter the elements from the matrix equation above.
Note that you can enter the values in rectangular form.
They will automatically be displayed in polar form
(screen 37). For j, press 2 ).

(37)

Note : Press ¥ Í and set the
column width to 6 to get the display
above.

4. To enter the 3x1 source matrix on the right hand side of
the equation, create a new matrix by pressing ƒ 3:New
(screen 38). Select 2:Matrix  as the type, name the
variable source , and set the row dimension to 3 and
column dimension to 1. Press ¸.

(38)

5. Enter the values from the right hand side of the matrix
equation in the same manner (screen 39).

(39)

Note : When the first element of a
complex number is preceded by a
minus sign it must be entered with
·. A minus sign on a following
element is entered as |.

6. Once the matrices are entered, matrix math is all that’s
needed to find the solution for the current matrix, ii.
Return to the Home screen, and enter this as shown in
screen 40.

unsymnet  Z c · 1 d p source  § ii
(40)

7. The load voltage across the short circuit is zero. The
load voltage across the zac is vac=(i1-i3)(5+j5)
(screen 41).

(41)

8. The load voltage across zbc is vbc=(i2-i3)(5+j5). Enter
the expressions as shown in screen 42. As expected, the
two non-zero voltages are the same magnitude, but 180°
out of phase.

(42)
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Tips and Generalizations

There are many shortcuts for entering functions. Check under the „, …, and † menus while in
the Program Editor. For example, Local  can be entered by pressing † 3:Local .

The string phase  is entered often in the examples in this chapter. To save typing, enter it once and
just after pressing e, press and hold ¤ while pressing A five times (once for each letter in phase).

Finally, release the ¤ key and press ¥ 6. This will save a copy of the highlighted letters so that
they can be quickly entered by pressing ¥ 7.

The TI-89 can easily handle Greek symbols such as α and ω. However, they take four keystrokes
each to enter (¥ c j a and ¥ c j w). If convenience is important, simply use the English
equivalents (a, w) which take only two keystrokes (j a or j w) or fewer if ™ is already
set.

The concept of building a simple function to do repetitive tasks was introduced. Don’t
underestimate the power of this method. For example, the whole power factor correction example
could be written as a function that takes various circuit parameters as an input and returns the
capacitor value needed to correct the power factor. Think of the time savings!

Another analysis technique involves the Laplace transform and the s-domain. Chapter 6 shows how
the symbolic capabilities of the TI-89 make it the ideal tool for dealing with all of those s’s.
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