ID: 10994

Time required 15 minutes

Calculus

Activity Overview

Students will graph piecewise functions and evaluate both the left hand limit and the right hand limit of the function as x approaches a given number, c. The **Trace** feature will be used to graphically estimate the one sided limit. Students will also use a table of values of each function to numerically verify that the values of the function to left and right of c are approaching the same number.

Topic: Limits

One Sided Limits

Teacher Preparation and Notes

- Students should already have been introduced to one-sided limits.
- Students should know that a limit exists if and only if the left hand limit and the right hand limit are equal.
- Upgrade the TI-89 Titanium to OS Version 3.10 so that "Discontinuity Detection" can be utilized. On a graph, press F1 > Format to turn Discontinuity Detection ON.
- To download the student worksheet, go to education.ti.com/exchange and enter "10994" in the keyword search box.

Associated Materials

• OneSidedLimits_Student.doc

Suggested Related Activities

To download any activity listed, go to <u>education.ti.com/exchange</u> and enter the number in the keyword search box.

- Limits (TI-Nspire CAS technology) 8997
- Continuity and Differentiability of Functions (TI-Nspire technology) 8498

The student worksheet gives key press instructions to set up the window so that their graphs look like the following.

Problem 1

Before changing the value of **a**, students will graphically estimate the limit of $y^1(x)$ as x approaches 1 from the left and the right. Students will also use the table to numerically estimate the value of **a** that will ensure that the limit of $y^1(x)$ as x approaches one exists.

Student Worksheet solutions

$$\lim_{x \to 1^{+}} y 1(x) \approx 1;$$
$$\lim_{x \to 1^{+}} y 1(x) \approx 5;$$
$$a \approx 1$$

F1+ F2+ F3 F ⁴ ToolsZoomTraceRe9r	1 F5+ F6+ F7+88) aphMathDrawPen
	1
	⊕
	:
xc:.886076	yc:1.
MAIN RAD APP	ROX FUNC

F1+ F2 ToolsSetur		A. Stadie	
х	y1		
.98	1.		
.99	1.		
1.	5.		
1.01	5.		
1.02	5.		
x=.98			
MAIN RAD APPROX FUNC			

Problem 2

Problem 1 is repeated for a different function. Before changing the value of a, students will graphically estimate the limit of y2(x) as xapproaches 1 from the left and the right. Students will also use the table to numerically estimate the value of a that will ensure that the limit of y2(x) as x approaches one exists. Here the algebraic calculations for the left and right hand limits are to be shown.

Student Worksheet solutions

$$\lim_{x\to 1^{-}} y2(x) \approx 3; \lim_{x\to 1^{+}} y2(x) \approx 5; a \approx 3$$

$$\lim_{x \to 1^{-}} y^{2}(x) = 1 + 2 = 3$$
$$\lim_{x \to 1^{+}} y^{2}(x) = a \cdot (1^{2}) = a$$
So $1 + 2 = a \cdot 1^{2}$; $a = 3$

F1+ F2 Tools Setur		<u> A. San</u> i	
X	y2		
.98	2.98		
.99	2.99		
1.	5.		
1.01	5.1005		
1.02	5.202		
x=.98			
MAIN	RAD APPI	ROX FUN(

Problem 3

Problems 1 and 2 are repeated for a different function. Before changing the value of a, students will graphically estimate the limit of y3(x) as x approaches 2 from the left and the right. Students will also use the table to numerically estimate the value of a that will ensure that the limit of y3(x) as x approaches two exists. Here the algebraic calculations for the left and right hand limits are to be shown.

Students should view the table near x = 2 instead of 1.

Student Worksheet Solutions

$$\lim_{x \to 2^{-}} f(x) \approx 2; \quad \lim_{x \to 2^{+}} f(x) \approx 5; a \approx 2;$$
$$2\sin\left(\frac{\pi}{2}(2-1)\right) = 3\sin\left(\frac{\pi}{2}(2-4)\right) + a; a = 2$$

Extension – Continuity

Students are introduced to the concept of continuity and are asked to prove the functions in Problems 2 and 3 are continuous. They are also instructed how to use CAS to algebraically solve for *a* that makes the limit exist.

Student Worksheet Solutions

Students must show that all three conditions are met in order to satisfy the criteria for continuity.

F1+ F2 :: 8 :: 5 :: 5 :: 5 :: 5 :: 75 :: 5 ::				
×	yЗ			
1.98	1.999			
1.99	1.9998			
2.	5.			
2.01	4.9529			
2.02	4.9058			
<u>×=1.98</u>				
MAIN	RAD APPI	ROX FUN(

F1+ Tools	F2+ A19ebra	F3+ Calc	F4+ Other	F5 Pr9miC	F6+ C1ean U	
					[Jone
• 1	im f(X)				а
X Y	1*					
■ so	lve	lim	f(×) = _	lim fl Ad-	∞ ,
	(×	.71		×	71 a	= 3.
1)	=limi	t(f	$(\mathbf{x}),$	$\times, 1$	1),	a)
MAIN		RADI	APPRO:	{ FU	NC	4730