One Sided Limits

Time required

ID: 10994
15 minutes

Activity Overview

Students will graph piecewise functions and evaluate both the left hand limit and the right hand limit of the function as x approaches a given number, c. The Trace feature will be used to graphically estimate the one sided limit. Students will also use a table of values of each function to numerically verify that the values of the function to left and right of c are approaching the same number.

Topic: Limits

- One Sided Limits

Teacher Preparation and Notes

- Students should already have been introduced to one-sided limits.
- Students should know that a limit exists if and only if the left hand limit and the right hand limit are equal.
- Upgrade the TI-89 Titanium to OS Version 3.10 so that "Discontinuity Detection" can be utilized. On a graph, press F1 > Format to turn Discontinuity Detection ON.
- To download the student worksheet, go to education.ti.com/exchange and enter "10994" in the keyword search box.

Associated Materials

- OneSidedLimits_Student.doc

Suggested Related Activities

To download any activity listed, go to education.ti.com/exchange and enter the number in the keyword search box.

- Limits (TI-Nspire CAS technology) - 8997
- Continuity and Differentiability of Functions (TI-Nspire technology) - 8498

The student worksheet gives key press instructions to set up the window so that their graphs look like the following.

Problem 1

Before changing the value of \mathbf{a}, students will graphically estimate the limit of $y 1(x)$ as x approaches 1 from the left and the right. Students will also use the table to numerically estimate the value of \boldsymbol{a} that will ensure that the limit of $y 1(x)$ as x approaches one exists.

Student Worksheet solutions

$\lim _{x \rightarrow 1^{-}} y 1(x) \approx 1 ;$
$\lim _{x \rightarrow 1^{+}} y 1(x) \approx 5$;
$a \approx 1$

Problem 2

Problem 1 is repeated for a different function. Before changing the value of \mathbf{a}, students will graphically estimate the limit of $y 2(x)$ as x approaches 1 from the left and the right.
Students will also use the table to numerically estimate the value of \boldsymbol{a} that will ensure that the limit of $y 2(x)$ as x approaches one exists. Here the algebraic calculations for the left and right hand limits are to be shown.

Student Worksheet solutions

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} y 2(x) \approx 3 ; \lim _{x \rightarrow 1^{+}} y 2(x) \approx 5 ; a \approx 3 \\
& \lim _{x \rightarrow 1^{-}} y 2(x)=1+2=3 \\
& \lim _{x \rightarrow 1^{+}} y 2(x)=a \cdot\left(1^{2}\right)=a \\
& \text { So } 1+2=a \cdot 1^{2} ; \quad a=3
\end{aligned}
$$

Problem 3

Problems 1and 2 are repeated for a different function. Before changing the value of a, students will graphically estimate the limit of $y 3(x)$ as x approaches 2 from the left and the right. Students will also use the table to numerically estimate the value of \boldsymbol{a} that will ensure that the limit of $y 3(x)$ as x approaches two exists. Here the algebraic calculations for the left and right hand limits are to be shown.

Students should view the table near $x=2$ instead of 1.

Student Worksheet Solutions

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{-}} f 1(x) \approx 2 ; \lim _{x \rightarrow 2^{+}} f 1(x) \approx 5 ; a \approx 2 ; \\
& 2 \sin \left(\frac{\pi}{2}(2-1)\right)=3 \sin \left(\frac{\pi}{2}(2-4)\right)+a ; a=2
\end{aligned}
$$

Extension - Continuity

Students are introduced to the concept of continuity and are asked to prove the functions in Problems 2 and 3 are continuous. They are also instructed how to use CAS to algebraically solve for \boldsymbol{a} that makes the limit exist.

Student Worksheet Solutions

Students must show that all three conditions are met in order to satisfy the criteria for continuity.

