Chapter 11

Confidence Intervals

Topic 22 covers confidence intervals for a proportion and includes a simulation. Topic 23 addresses confidence intervals for a mean. Differences between two proportions are covered in Topic 24. The confidence interval for the difference between two means is discussed in Topic 25.

It is important that you understand the following two examples using the standard normal probability distribution (the z distribution).

Example 1: Find the z value that separates the top 0.025 of the area under the distribution from the bottom 0.975 . This is called the critical value and designated as $z_{.025}$ or $z_{\mathrm{a} / 2}$. (In this case $a=0.05$.)

From the Stats/List Editor:

1. Press F5 Distr, 2:Inverse, and then choose 1:Inverse Normal with Area: .975, $\mu=0$ and $\sigma=1$. Observe the result of 1.95996 .

From the Home screen:
2. Press CATALOG, F3 Flash Apps. Press I and use Θ to highlight invNorm.
3. Press ENTER to complete the input.
4. Type .975) and press ENTER for tistat.invnorm $(.975)=1.95996$ (screen 1).

Example 2: Find the area in the tail of the distribution using NormalCdf, both from the Stats/List Editor and the Home screen (Topic 18).

1. From the Stats/List Editor, press F5 Distr, 4:NormalCdf with Lower Value: 1.95996, Upper Value: $\infty, \mu=\mathbf{0}$, and $\sigma=1$.
2. Press ENTER for the result of .025 .

From the Home screen:

1. Press CATALOG, F3 Flash Apps and normcdf(.
2. Type $\mathbf{1 . 9 5 9 9 6}, \infty, \mathbf{0}, \mathbf{1}$) to complete the entry.
3. Press ENTER to observe the result of .025000162887 .

Topic 22—Large Sample Confidence Interval for a Proportion and Simulation to Clarify the Meaning of a Confidence Interval

Example: In a simple random sample of 265 people drawn from a population of interest, 69.4% of them agreed with a particular public policy question. What is the 95% confidence interval for the proportion in the entire population who would agree?

1. In the Stats/List Editor, press 2nd [F7] Ints, 5:1-PropZInt, with Successes, x: 184, n: 265, and C Level: . 95 (screen 2).
2. Press ENTER to view screen 3 with the 95%

C Int: \{.6389, .7498\} or $63.9 \% \leq p \leq 75.0 \%$, or $0.694 \pm .0555$, with p-hat: $\mathbf{0 . 6 9 4 3 4}$, and the margin of error ME: 0.055466. You are 95% confident that between 64% and 75% of the population agree with the public policy question.

Note: 265 *. $694=184 \geq 10$ and $265 *(1-.694)=265-184=81 \geq$ 10, so a normal distribution can be used to approximate a binomial, as discussed in Topic 19.
(2)

Note: If for successes 265 * . 694 were used, a Domain error would result since $265 * .694=183.91$, which is not an integer. Entries must be rounded to the nearest integer.
(3)

As you complete this topic and subsequent ones, there will be various Home screen calculations at appropriate points. Enter these calculations from the Home screen to verify the results.

Home screen calculation:

$\mathrm{ME}=z_{a / 2} * \sqrt{\frac{\hat{p}^{*}(1-\hat{p})}{n}}=1.96 \sqrt{\frac{.694(1-.694)}{265}}=0.055485$
as in screen 4, with the lower and upper values calculated as in screen 5 (. $694 \pm \mathrm{ME}$).

Note: $184 \div 265=.69434=$ p-hat \approx

Simulation to Clarify the Meaning of a Confidence Interval

What does it mean to be 80% confident that an interval contains the real population value? The \hat{p} in the previous example was randomly generated from a binomial distribution with $n=265$ and $p=.67$, (screen 6), so the confidence interval of 0.6389 to 0.7498 did, in fact, contain the population proportion of 0.67 . However, you should take a sample to estimate the population proportion because you do not know it. How confident can you be of your answer?

From the Home screen:

1. Set RandSeed 23 (screen 7).
2. Enter the following functions, being sure to place the colons (:) between the functions:
tistat.randbin(50,.67) \rightarrow x:tistat.zInt_1p(x,50,.80): \{statvarllower, statvarslupper\}
This is all on one line, only part of which is displayed in screen 7.
a. tistat.randbin(50,.67) $\rightarrow x$ generates the number of Successes, x : for a sample of 50 people.
b. tistat.zInt_1p(x,50,.80) calculates the 80% confidence interval.
c. \{statvars\lower, statvarslupper\} displays the results.
3. Press ENTER to display the results $\{.532029, .707971\}$ in the middle of screen 7.
69.4% in the original problem.
(4)
(5)

4. Press ENTER four more times to view screens 7 and 8.

Notice that four of the five intervals (80\%) contain the population value 0.67 . Only the second interval on screen 8 (. 470 to 0.650) does not. You should not expect to get exactly four out of each five intervals for every five intervals generated, but you could be confident that, on average, about 80 out of 100 would. From Topic 19 you know the distribution of proportions, \hat{p} has mean $=p$ and standard deviation $\sqrt{\frac{p(1-p)}{n}}$, so the ME $=z_{a / 2} \sqrt{\frac{p(1-p)}{n}}$ is long enough to reach the mean p if \hat{p} is not in the tails of the distribution. In your example this occurs 80% of the time. Investigate further by trying different confidence levels, sample sizes, and population p 's.

Topic 23—Large Sample Confidence Interval for a Mean

Example: A random sample size of 30 people in the population has heights given below. Enter the following data from the Home screen.
\{63.0, 63.6, 66.3, 67.9, 69.3, 66.0, 68.7, 64.2, 66.9, 66.7, 65.3, 62.5, 67.7, 63.9, 65.6, 62.0, 61.0, 65.5, 65.8, 66.9, 61.8, 62.2, 62.6, 66.0, 63.6, 65.5, 64.9, 63.7, 69.4, 64.8\} \rightarrow list1.

What is the 90% confidence interval for the population mean?

From the Central Limit Theorem, a random sample of size ≥ 30 is considered sufficiently large for estimating means (not proportions) and assures that the distribution of sample means is approximately normally distributed. A sample size of 30 is also large enough to be able to replace σ with \mathbf{s}_{x}.

1. From the Stats/List Editor, press F4 Calc, 1:1-Var Stats. Use List: list1, Freq: 1, and clear the Category List: and Include Categories: fields.
2. Press ENTER to display screen 1 with $\overline{\mathrm{x}}=\mathbf{6 5 . 1 1}$, $\mathrm{s}_{x}=\mathbf{2 . 2 6 5 6 9}$, and $\mathrm{n}=30$.

In the steps that follow, you do two techniques side by side. The first technique is used if σ is known. You will assume it is known, that $\sigma=2.27$, and calculate $\mathrm{a} z$ Interval. The second technique assumes you do not know σ, $\mathrm{s}_{x}=\mathbf{2 . 2 6 5 6 7} \approx 2.27$ is used, and calculate a t Interval.

Stats Input Method

Using the Stats variable in the Data Input Method field:

1. Calculate $\mathrm{a} z$ Interval:
a. Assume $\sigma=2.27$ and press 2nd [F7] Ints, 1:ZInterval, and choose Data Input Method: Stats (screen 10).

Or calculate a t Interval:
b. If σ is unknown, press 2nd [F7] Ints, 2:TInterval, and choose Data Input Method: Stats for a screen similar to screen 10.
2. Calculate a z Interval:
a. Assume $\sigma=2.27$ and press ENTER, with inputs $\sigma=2.27, \bar{x}=65.1, n: 30$, and C Level: 0.90 (screens 11 and 12).

Both techniques give basically the same results if s_{x} replaces $\sigma\left(\mathrm{s}_{x}=\sigma\right)$ and $n \geq \mathbf{3 0}$ as you see in the Home screen calculations in the Data Input Method section.
(10)

(11)
(12)

(13)

(14)

You are 90% confident that the mean population height is between 64.4 and 65.8 inches, or $64.4 \leq \mu \leq 65.8$, or 65.1 ± 0.7 inches, with $\bar{X}=65.1$ and the margin of error $\mathrm{ME} \approx 0.7$.

Data Input Method

Using the Data variable in the Data Input Method field:

1. Calculate $\mathrm{a} z$ Interval:
a. Assume σ is unknown and $\mathrm{s}_{x}=\mathbf{2 . 2 6 5 6 7} \approx \mathbf{2 . 2 7}$.

Press 2nd [F7] Ints, 1:ZInterval, and choose Data Input Method: Data (screen 15).

Or calculate a t interval:
b. If σ is not known, press 2nd [F7] Ints, 2:Tinterval and choose Data Input Method: Data.
c. Choose List: list1, Freq: 1, and C Level: $\mathbf{0 . 9 0}$ (screen 16). Screen 16 needs σ, but screen 17 does not need s_{x}.
(15)

(16)

(17)

(18)

Home screen calculations:

a. $\mathrm{ME}=z_{a / 2} * \frac{s}{\sqrt{n}}=\frac{1.645 * 2.27}{\sqrt{30}}=0.68 \approx 0.7$ as in screen 18 and in screen 20.
b. $\mathrm{ME}=t_{a / 2} * \frac{s_{x}}{\sqrt{n}}=\frac{1.699 * 2.27}{\sqrt{30}}=0.70$ as in screen 19 and in screen 21.

As the sample size gets larger, $z_{a / 2}$ and $t_{a / 2}$ become closer (see Topic 31). Therefore, when you replace σ with s_{x}, these techniques are basically the same.

Small Sample Confidence Intervals for the Mean

Small sample confidence intervals for the mean are calculated the same as in previous examples if the samples are from populations that are normally distributed. Use the ZInterval technique if σ is known and the TInterval technique if σ is unknown, but s_{x} can be calculated. Do not use a ZInterval by approximating σ with s_{x} for small samples. (See Topic 31.)

Topic 24—Large Sample Confidence Interval for the Difference Between Two Proportions

Example: A polling organization found that in a simple random sample of 936 women, 694 (694/936 = 74.1\%) agreed with a particular public policy question. In a simple random sample of 941 men, 645 (68.5\%) agreed with the same public policy question. Find the 95% confidence interval for the difference in proportions between the two populations sampled.

In this example, the values in $x 1$ and $n 1$ represent women, and $x 2$ and $n 2$ represent men.

1. In the Stats/List Editor, press [2nd [F7] Ints, 6:2-PropZInt.
2. Enter these values and press ENTER:

Successes, x1: 694
n1: 936
Successes, x2: 645
n2: 941
C Level: 0.95 (screen 22).
3. Press ENTER to display screen 23 with the 95% confidence interval of (. 0152 to 0.0968), or
$1.5 \% \leq \mathrm{p}_{1}-\mathrm{p}_{2} \leq 9.7 \%$, or $\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm \mathrm{ME}=5.6 \% \pm 4.1 \%$.
You are 95% confident that the difference in population proportions lies between 1.5 and 9.7 percent. Because zero is not in the interval, this indicates that a significantly larger proportion of women are in agreement with the policy question than are men.

Home screen calculation:

$\mathrm{z}_{\text {a/2 }}=$ tistat.invnorm $(1-.05 / 2)=1.95996$ is used for the margin of error.
$M E=1.96 \sqrt{\frac{.7415^{*}(1-.7415)}{936}+\frac{.6854 *(1-.6854)}{941}}=.0408$

Topic 25-Large Sample Confidence Interval for the Difference Between Two Means (Unpaired and Paired)

Unpaired or Independent Samples

Example: A study designed to estimate the difference in the mean test scores that result from using two different teaching methods for a block of material obtained the

Note: $n_{1}=936=694+242$ (both values >5), $n_{2}=941=645+296$ (both values > 5), therefore a normal distribution can be used to approximate the binomials.

(23)

following data from two random samples of students. Find the 90% confidence interval for the differences of the mean test scores for the two teaching methods.

	Mean	stdDev	\boldsymbol{n}
Method A	75.2	8.42	32
Method B	78.4	8.13	30

Since n_{1} and n_{2} are both ≥ 30, substitute stdDevA and stdDevB for σ_{1} and σ_{2}, and the Central Limit Theorem assures you that the distribution of differences of sample means is normally distributed.

1. From the Stats/List Editor, press 2nd [F7] Ints, 3:2-SampZInt, with Data Input Method: Stats (screen 24).
2. Press ENTER to display screen 25 , which gives the input with 8.42 substituted for σ_{1} and 8.13 substituted for σ_{2}. Enter $\mathbf{7 5 . 2}$ for $\bar{X}_{1}, \mathbf{3 2}$ for $n_{1}, \mathbf{7 8 . 4}$ for \bar{X}_{2} and $\mathbf{3 0}$ for n_{2}.
3. Press \odot to get to the last line shown in screen 26.
4. Enter 0.90 in the C Level: field for a 90% confidence interval.

Note: Modified boxplots of the original data showed no outliers.

For these large samples if $\operatorname{stdDevA}=\mathrm{S}_{\mathrm{A}}$ instead of σ_{A} and stdDevB $=\mathrm{S}_{\mathrm{B}}$ instead of σ_{B}, then the 2-SampZInt procedure that follows gives approximately the same answer as the 2-SampTInt procedure of Topic 32 (for the reason explained in Topic 23).
(24)

(25)

(26)

5. Press ENTER to display screen 27 with the 90%
confidence interval from -6.66 to 0.25763 , or $-6.66<\mu_{1}-\mu_{2}<0.26$, or -3.2 ± 3.46.

Home screen calculation:

There is a difference of 3.2 points in the mean scores of the two methods (or $75.2-78.4=-3.2$) with a margin of error
$1.645 * \sqrt{\frac{8.42^{2}}{32}+\frac{8.13^{2}}{30}}=3.46$ when invNorm $(1-0.10 / 2)=1.645$.

Conclusion

Because zero is in the interval, the observed difference between the sample means is not statistically significant. Method A could have a higher population mean than Method B (a positive difference), or Method B could have a higher population mean than Method A (a negative difference.)

Matched Paired Samples

Example: To test blood pressure medication, the diastolic blood pressure readings for a random sample of 30 people with high blood pressure were recorded. After a few weeks on the medication, their pressures were recorded again. The data is recorded in the table and stored in list1 and list2 and the differences are stored in list 3 (screen 28). Calculate the 90% confidence interval for the difference in blood pressure after taking the medication.

Note: To continue, you can save time by just entering the differences in list3.

Subject	Before (list1)	After (list2)	(list1-list2) \rightarrow list3
1	95	99	-4
2	105	86	19
3	88	92	-4
4	100	95	5
5	104	86	18
6	109	89	20
7	89	87	2
8	93	85	8
9	100	87	13
10	97	86	11
11	87	88	-1
12	104	90	14
13	106	89	17
14	103	91	12
15	105	87	18
16	101	93	8
17	108	95	13
18	107	90	17
19	105	90	15
20	92	95	-3
21	106	97	9
22	103	90	13
23	97	97	0
24	103	95	8
25	92	80	12
26	108	85	23
27	102	98	4
28	100	91	9
29	106	88	18
30	96	90	6
\bar{X}	100.4	90.4	10
s_{X}	6.35	4.51	7.55

1. Set up and define Plot $\mathbf{1}$ as a modified boxplot with Mark: Square, x : list3, and then press F5 ZoomData.
2. Press F3 Trace (screen 29). The boxplot shows there are no obvious outliers, so with sample size $n=30 \geq 30$ you can assume that the distribution of the mean of the differences $\bar{d}(\bar{d}=10$ for this sample) are normally distributed). The sample size is large enough that you can replace σ_{d} with $s_{\mathrm{d}}=7.55$, as justified in Topic 23. (See Topic 32 for the t Interval procedure.)

From the Home screen, enter mean(list3) and stdDev(list3) to observe the values in screen 30. Notice that the mean blood pressure before is greater than the mean pressure after the medication is taken.
3. In the Stats/List Editor, press 2nd [F7] Ints, 1:ZInterval, and change to Data Input Method: Data (screen 31).
4. Press ENTER to display screen 32.
(32)

