\qquad

Problem 1 - Explore and discover

The graph at the right is the curve $y=x^{2}$.
Your challenge is to think of at least two ways to estimate the area bounded by the curve $y=x^{2}$ and the x-axis on the interval $[0,1]$ using rectangles. Use the following guidelines:

- all rectangles must have the same width

- you must build all your rectangles using the same methods
- the base of each rectangle must lie on the x-axis

Graph $y=x^{2}$ and set your window to $[-0.1,1]$ for x and $[-0.2,1.3]$ for y. Draw your first and second method on the graphs below. For each method calculate the following:

- Number of rectangles
- Height and width of each one
- Area of each
- Sum of the area

- Which method did a better job?
- How could you improve on it?

In the following problem, you will examine three common techniques that use rectangles to find the approximate area under a curve. Perhaps you discovered some of these techniques during your exploration in the above problem. The first problem uses rectangles whose rightendpoints lie on the curve $y=x^{2}$.

Problem 2 - Using five right-endpoint rectangles

Divide the interval $[0,1]$ into five equal pieces. Enter the information for each interval or rectangle in the table below. Remember that the right endpoint is the x-value and the height is the y-value of the right endpoint on the curve.

Interval	Right Endpoint	Height	Area

The formula that can be used to express the total area is:

$$
\begin{gathered}
R_{5}=0.2 \cdot f 1(0.2)+0.2 \cdot f 1(0.4)+0.2 \cdot f 1(0.6)+0.2 \cdot f 1(0.8)+0.2 \cdot f 1(1.0) \\
\text { or } \\
R_{5}=0.2[f 1(0.2)+f 1(0.4)+f 1(0.6)+f 1(0.8)+f 1(1.0)]
\end{gathered}
$$

- Calculate this sum.
- Now add up the numbers in the Area column.
- Are these two numbers the same or different?

Another way to find the area of the rectangles is using sigma notation.

- Write the notation in the $\sum_{x=1}^{5} x^{2}$ form. Adjust what is being summed.

To sum it on the calculator, use Home > F3:Calc $>\mathbf{4 : \Sigma}$ (sum for the command with the format: \sum (expression, variable, lower limit, upper limit)

- Does this agree with the answer for the area you found previously?

Problem 3 - Using five left-endpoint rectangles

This problem uses rectangles whose left-endpoints lie on the curve $y=x^{2}$.
Divide the interval $[0,1]$ into five equal pieces. Enter the information for each interval in the table below. Remember that the left endpoint is the x-value and the height is the y-value of the left endpoint on the curve.

Interval	Left Endpoint	Height	Area

The formula that can be used to express this area is:

$$
\begin{aligned}
& L_{5}=0.2 \cdot f 1(0)+0.2 \cdot f 1(0.2)+0.2 \cdot f 1(0.4)+0.2 \cdot f 1(0.6)+0.2 \cdot f 1(0.8) \text { or } \\
& L_{5}=0.2[f 1(0)+f 1(0.2)+f 1(0.4)+f 1(0.6)+f 1(0.8)]
\end{aligned}
$$

- Calculate this sum.
- Now add up the numbers in the Area column.
- Are these two numbers the same or different?
- What is the sigma notation for the area of the rectangles?
- Use the calculator to find the sum. Does this result agree with the answer above?

Problem 4 - Using five midpoint rectangles

We will now investigate a midpoint approximation. How would you draw five rectangles, with equal width, such that their midpoints lie on the curve $y=x^{2}$?
Divide the interval $[0,1]$ into five equal pieces. Enter the information for each interval or rectangle in the table below. Remember that the midpoint is the x-value and the height is the y-value of the midpoint on the curve.

Interval	Midpoint	Height	Area

The formula that can be used to express this area is:
$M_{5}=0.2 \cdot f 1(0.1)+0.2 \cdot f 1(0.3)+0.2 \cdot f 1(0.5)+0.2 \cdot f 1(0.7)+0.2 \cdot f 1(0.9)$ or
$M_{5}=0.2[f 1(0.1)+f 1(0.3)+f 1(0.5)+f 1(0.7)+f 1(0.9)]$

- Calculate this sum.
- Now add up the numbers in the Area column.
- Are these two numbers the same or different?
- What is the sigma notation for the area of the rectangles?
- Use the calculator to find the sum. Does this result agree with the answer above?

Exploring the Area Under a Curve

Problem 5-Summarize your findings

In this activity, you explored three different methods for approximating the area under a curve.
The exact area under the curve $y=x^{2}$ on the interval $[0,1]$ is $\frac{1}{3}$ or 0.333 .

- Which approximation produced the best estimate for the actual area under the curve?
- Describe which factors contribute to left, right, and midpoint rectangles giving overestimates versus underestimates.
- What can you do to ensure that all three of these techniques produce an answer that is very close to $\frac{1}{3}$? Test your conjecture by using evaluating a sum that produces a much more accurate answer.

