\qquad

ACTIVITY 2

Flipping a Penny

Two functions are inverses if the inputs and outputs of one function are reversed for the second function. As an example, suppose 2 is added to 3 to obtain $5(2+3=5)$. To "reverse" this answer and obtain the original value of 3,2 is subtracted from $5(5-2=3)$. Thus, adding 2 and subtracting 2 are inverses of each other. This means that an inverse will "reverse" an operation and the original number will be obtained.

In this activity, you will explore two functions which are inverses of each other. You will explore their characteristics and learn how they "reverse" each other's operation.

You'll Need

- 1 CBR unit
- 1 TI-83 or TI-82 Graphing Calculator
- BIG handful of pennies dated after 1983 or before 1982

Note: Pennies minted between 1959 and 1981 have a higher percentage of copper and thus have a greater mass than pennies minted from 1983 to the present, so it is important that you sort the pennies before you begin and do not mix the two different types of pennies.

- Spring or slinky
- Paper bowl or plate
- Ring stand or hook

Instructions

1. Attach the paper bowl or plate to the spring. Hang the spring from the ceiling or a ring stand.
2. Position the CBR face up under the plate .
3. Run the RANGER program on your calculator.
4. Enter the setup instructions.
a. From the MAIN MENU select 1:SETUP/SAMPLE to access the setup menu.
b. Press ENTER until the REALTIME option reads no.
c. Press \square (the down arrow) to select the next line TIME (S) and press ENTER 4 ENTER to change the time to 4 seconds.
d. Press \square to select the next line. Correct or verify the settings and press ENTER. Repeat until the options for each line read as shown at right.
e. Press to move the cursor to the START NOW command. Press ENTER and follow the directions on the calculator screen.

HíIII HEПU	FSTAFT IIDH
FEALTIHE:	[1]
TIHEO:	4
[ISFLAY:	[IST
EEらIII OII:	[EIITEF]
SHODTHI「İ:	LİHT
UKIITS:	HETEFS

5. The graph should be a horizontal line. If you are not satisfied with your results, press ENTER and select 5 :REPEAT SAMPLE. Trace along the graph to approximate the distance between the plate and the CBR. Record this distance in the table below.
6. Add 5 pennies to the plate. Press ENTER and select 5:REPEAT SAMPLE.
7. Repeat step 6 until a total of 20 pennies have been added to the plate.
8. Press ENTER and select 7:QUIT to exit the RANGER program.

Data Collection

1. Convert the distance to the plate from meters to centimeters and record both in the table.

Number of Pennies	Distance to the Plate (meters)	Distance to the Plate (centimeters)
0		
5		
10		
15		
20		

2. Enter the collected data into lists 1 and 2 by first clearing the lists. To do this, press STAT then select 4:CIrList and type 2nd [L1] [2nd [L2] ENTER. Press STAT] and select 1:Edit and enter the number of pennies collected in each trial in L1. Then enter the distance to the plate in centimeters in L2.

Questions

1. To set up a scatter plot, press 2nd [STAT PLOT] and select 1:Plot1. Highlight On and press ENTER. Select $\omega \sim$ for the Type of plot, $\mathbf{L 1}$ for the Xlist, $\mathbf{L 2}$ for the Ylist, and the square for the Mark. Press ZOOM and select 9:ZoomStat. Sketch the scatter plot in the space provided. \square
2. Find the linear regression of the line.

For the TI-83: Press STAT \square and select 4:LinReg (ax+b). Press 2nd [L1] [2nd [L2] ENTER.

For the TI-82: Press STAT \square and select 5:LinReg (ax+b). Press 2nd [L1] [2nd [L2] ENTER.

Record the equation.
$y=$ \qquad
3. Identify the slope of the line. Put into words the meaning of the slope of this line.
slope $=$ \qquad
\qquad
\qquad
4. Identify the y-intercept of the line and explain its meaning in words.
y-intercept $=$ \qquad
5. Press $Y=$ and enter the equation in Y1. Press GRAPH. How well does the graph of the line model the data?
6. To plot the number of pennies versus the distance to the plate from the original collected data, press 2nd [STAT PLOT] and select 2:Plot2. Highlight On and press ENTER. Select \downarrow ㄱ for the Type of plot, L2 for the Xlist, L1 for the Ylist, and the square for the Mark. Press ZOOM and select 9:ZoomStat. Sketch the scatter plot in the space provided.

7. Find the linear regression of the line.

For the TI-83: Press STAT \square and select 4:LinReg (ax+b). Press 2nd [L2] [2nd [L1] ENTER.

For the TI-82: Press STAT \square and select 5:LinReg (ax+b). Press 2nd [L2] 2nd [L1] ENTER.

Record the equation:
$y=$ \qquad
This is the inverse of the equation found in question 3 since the values of the independent and dependent variables have been switched.
8. Identify the slope of the line. Put into words the meaning of the slope of this line.
slope $=$ \qquad
9. Identify the y-intercept of the line and explain its meaning in words.
y-intercept $=$ \qquad
\qquad
\qquad
10. Press $Y=$ and enter the equation in Y2. Press GRAPH and compare the two graphs.
\qquad
\qquad
11. In the table below, find the value of Y 1 for the indicated number of pennies which would be the distance between the CBR and the plate for that number of pennies. Then evaluate Y2 at those distances.

\mathbf{P} Number of Pennies	Y1 (P)	Y2 (Ans)
3		
9		
18		
75		

12. Describe the pattern that you find when you examine the table from question 11.
13. This pattern is true for any function and its inverse. To verify this relationship for all values of x for this function and its inverse, press $Y=$ and enter $\mathrm{Y} 1(\mathrm{Y} 2)$ in Y 3 .

For the TI-83: Press VARS \square 1:FUNCTION 1:Y1 \square VARS \square 1:FUNCTION 2:Y2 \square.
Press GRAPH.

For the TI-82: Press 2nd [Y-VARS] 1:FUNCTION 1:Y1 1 2nd [Y-VARS] 1:FUNCTION 2:Y2 \square. Press GRAPH.

What is the function that models the graph in Y3?
14. Press $Y=$ and enter $Y 2(Y 1)$ in $Y 4$.

For the TI-83: Press VARS \square 1:FUNCTION 2:Y2 \square VARS \square 1:FUNCTION 1:Y1 \square.
Press GRAPH.

For the TI-82: Press 2nd [Y-VARS] 1:FUNCTION 2:Y2 (2nd [Y-VARS] 1:FUNCTION 1:Y1 \square. Press GRAPH.

What is the function that models the graph in Y4?
\qquad
15. How do the graphs in Y3 and Y4 compare?
16. How does the comparison found in question 15 verify the pattern found in question 12 ?
\qquad
\qquad

