LAW OF SINES, LAW OF COSINES AND (TAYLOR POLYNOMIALS!)

Student Worksheet
Name: \qquad
Each page of the activity which requires a written solution is listed below.

1.1	1.2	1.3
1.4	DEG AUTO REAL	
LAW OF SINES and LAW OF COSINES (and		
IAYLOR POLYNOMIALSI)		
If a triangle doesn't have a right angle, and		
only some parts of the triangle are known,		
how might you solve it? These triangles are		
oblique. You need to know the measure of at		
least one side and any two other parts of the		
triangle to solve a triangle of this nature.		
Why?		

My answers:

Give a step by step explanation of how the ratios will help solve the entire triangle in the case AAS or ASA as shown above. Assume the labeled parts are given quantities. This is the Law of Sines!

$1^{\text {st }}$ way (include diagram)

My answers:

$2^{\text {nd }}$ way (include diagram)
(include diagram)
Notice on the previous page, what has to be true of side a to make a triangle.
I
When side a is \qquad than the height and than side b, two triangles are possible. Solve each triangle. Use the numbers shown if you wish and check your answers.

$\mathbf{1}^{\text {st }}$ triangle (include diagram):

$2^{\text {nd }}$ triangle (include diagram):

When side a is \qquad than side b,
\qquad triangle is possible.

\section*{| 1.13 | 1.14 | 1.15 | 1.16 |
| :--- | :--- | :--- | :--- |
| DEG AUTO REAL | | | |}

Summarize
When you use the Law of Sines, what seem to be the important things to look for to use the ratios?

In the no solution case, what will happen as you solve the problem algebraically?

In the two solution case, what will happen as you solve the problem algebraically?

Grab angle B and observe what happens to the ratios. When do the ratios achieve a mavimum value? Granh the data maints and

Write complete sentences and give examples if necessary.

\section*{| 1.5 | 2.1 | 2.2 | 2.3 | DEG AUTO REAL |
| :--- | :--- | :--- | :--- | :--- |}

Let's try some more polynomials. On the graph 2, graph
$y=\frac{1}{\text { sideb }} \cdot\left(x-\frac{x^{3}}{3!}\right)$
How does that compare to our curve?
Can we get any better?

Record your observations.

2.5	2.6	2.7	2.8	DEG AUTO REAL

We generated our curve using a sine function. And now we can see that we can also get this graph using a polynomial function. Taylor was given credit for writing any function as a polynomial. In your notes, what are the characteristics of trig functions? What are the characteristics of polynomial functions? Why do you think this is a significant connection?

3.1	3.2	3.3	3.4	DEG AUTO REAL

Using your CAS, generate more terms in your polynomial and observe how close the Taylor polynomial gets to the $\sin (x)$. What happens as you add more and more terms? What if you added an infinite number of terms?

3.3	3.4	3.5	3.6	DEG AUTO REAL	CAPS

Let's do some more exploring! Try e^{x} and use the CAS to generate that Taylor polynomial. What about $\cos (x)$? Think of they symmetry of your functions (i.e. even/odd), what is true about the trig function and the powers of the polynomial for each function?

