\qquad
\qquad

Problem 1 －Draw A Tangent Line by Hand

On the graph to the right，draw a line tangent to $y=x^{2}$ in the first quadrant．
－Approximate the slope of the line．Show your work．
－Write the equation of your line．

Problem 2 －Draw and Explore Tangent Line with Technology

Press $[0 N$ ．Go to $[Y=]$ by pressing $\square \mathbb{F}$ ．Turn off all function by either using $F 4$ to uncheck the functions or select F1：Tools＞8：Clear Functions．After y1＝press \boldsymbol{x} ， 2 ．
Use the standard window by selecting F2：Zoom＞6：ZoomStd．
To draw a tangent line on the graph in the first quadrant use F5：Math＞A：Tangent．Type in an x－value between 0 and 3．1．The tangent line and its equation now appear．Press $⿴ 囗 十 \mathbb{F}$ and enter this function in $\mathbf{y} \mathbf{2}=$ ．
Let＇s zoom in and observe the behavior．Press F2：Zoom＞2：ZoomIn．Move the cursor near the point of tangency and press EENTER．Zoom in again by pressing F2：Zoom＞2：ZoomIn and ENTER．Repeat the process of zooming in on the point of tangency a few more times to observe what happens．
－Write your observation of how your tangent line and the graph $\mathbf{y} \mathbf{1}(x)=x^{2}$ compare when examined close up？
－Conjecture－Will this type of behavior occur for all other functions？Explain your reasoning．
（You may want to try it for another function．You can choose your own or try $y=\sin (x)$ ．）

Local Linearity

Problem 3 - Graph a piecewise function to explore local linearity

A function is said to be linear over an interval (i.e. locally linear over a small interval) if the slope is constant. Let's discover if all functions have a constant slope when they are examined in a small enough interval.

On your calculator, graph $y=\left\{\begin{array}{l}x^{2}, x \leq 2 \\ 2 x, x>2\end{array}\right.$ in y1 using the command when(.
Press CATALOG, find when(quickly by pressing alpha \square. Note the formatting hints provided at the bottom of the catalog screen. Press ENTER.

This 2-piece piecewise function is entered by pressing x [2nd [<] $\ddagger 2 \square x$ ब $2 \square 2 x \square$ [ENTER.

First observe the graph with the standard window. Then press F2:Zoom > 6:ZoomStd.

Discover if all functions have the property of local linearity by zooming in on the point $(2,4)$. This point is called a cusp. (Recall the F2:Zoom > 2:ZoomIn process.)

- Explain your observations. Use words like "slope" and "local linearity" to explain if, in the neighborhood of $(2,4)$, the function becomes one straight line.

Problem 4 - Graph another piecewise function

To explore if all piecewise functions lack the property of local linearity, beginning with Zoom
Standard, zoom in on $(2,4)$ of the function $f(x)= \begin{cases}x^{2} & , x<2 \\ 4 x-4, x \geq 2\end{cases}$

- Does this function appear to be locally linear in the neighborhood of $(2,4)$? Compare and contrast this function to the one graphed and explored in Problem 3.

Problem 5 - Conclusion

You know the slope is $\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$. For the function $f(x)$, this can be written as $\frac{\Delta f}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$. If you were finding the slope of function in the interval of a repeatedly zoomed in graph, describe what happens to $\Delta x=x_{2}-x_{1}$.

