EP044-2008: Suite définie par une moyenne arithmétique

Auteur du corrigé : François Texier

TI-Nspire™ CAS

Avertissement: ce document a été réalisé avec la version 1.4; il est disponible dans sa version la plus récente sur notre site http://education.ti.com/france, menu Ressources pédagogiques.

Fichier associé: EP044_2008_moyenne_CAS.tns

1. Le sujet

Sujet 044 de l'épreuve pratique 2008 – Suite définie par une moyenne arithmétique

Enoncé

On considère la suite récurrente (u_n) définie pour tout n entier strictement positif par,

$$u_n = \frac{6}{n} (1^2 + 2^2 + + n^2) = \frac{6}{n} \sum_{k=1}^{n} k^2$$

Partie expérimentale

- 1. À l'aide d'un tableur ou d'une calculatrice, représenter graphiquement les 50 premiers termes de la suite (u_n) .
- **2.** Émettre une conjecture sur le type de fonction f telle que, pour tout n entier entre 1 et 50 on ait : $u_n = f(n)$.
- 3. Mettre en place la stratégie validée par l'examinateur et déterminer précisément la fonction f.

Démonstrations

4.

- a) Démontrer que pour tout n entier naturel non nul, on a $u_n = f(n)$ où f est la fonction validée par l'examinateur.
- b) En déduire une formule simple donnant la somme des carrés des n premiers entiers strictement positifs.

Production demandée

- Des explications orales et à l'écran pour les questions 1. à 3.;
- Les réponses argumentées à la question 4.

Compétences évaluées

- Compétences TICE
 - Traitement d'une formule sommatoire avec une calculatrice ou un tableur ;
 - Représentation graphique d'une suite.
- Compétences mathématiques
 - Détermination d'une fonction polynôme dont la courbe représentative passe par des points particuliers.
 - Démonstration d'une formule par récurrence.

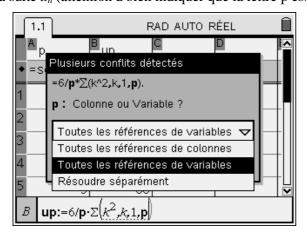
2. Corrigé

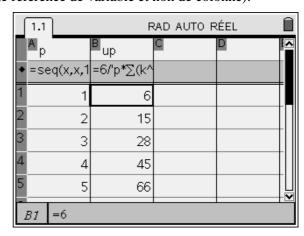
Les écrans qui figurent dans ce corrigé sont obtenus à partir de la calculatrice.

1) Ouvrir une page Tableurs & listes.

Nommer « **p** » la colonne A et « **up** » la colonne B.

Dans la cellule grise de la colonne **A**, taper la formule = $\sec(\mathbf{x},\mathbf{x},\mathbf{1},\mathbf{50},\mathbf{1})$ pour afficher les 50 valeurs de **p**, puis dans la cellule grise de la colonne **B**, taper la formule = $\frac{6}{\mathbf{p}}\Sigma(\mathbf{k}^2,\mathbf{k},\mathbf{1},\mathbf{p})$ pour calculer les 50 premiers termes de la suite u_n (attention à bien indiquer que la lettre **p** est une référence de variable et non de colonne).

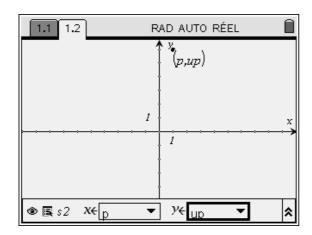


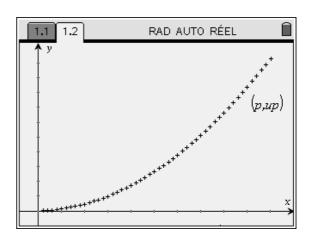


Ouvrir une page Graphiques & géométrie.

Définir dans le menu **Type de graphique**, **Nuage de points** et lier x à \mathbf{p} , y à \mathbf{up} .

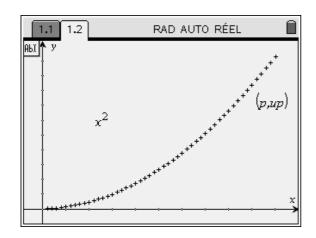
Choisir dans le menu Fenêtre, Zoom-Données, puis demander le tracé.

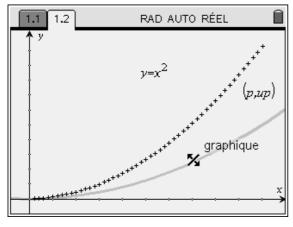


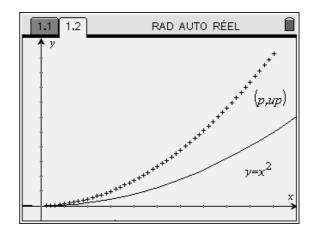


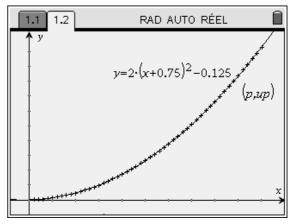
La forme du nuage de points obtenu suggère que la fonction associée soit une fonction du second degré. Taper sous forme de **Texte** « x^2 » à l'intérieur de la fenêtre, puis déplacer ce texte pour l'amener sur l'axe des ordonnées, la parabole $y = x^2$ est alors tracée.

Ensuite à l'aide du curseur ajuster la courbe au nuage comme l'indiquent les écrans ci-dessous.









2) Ouvrir une page Calculs.

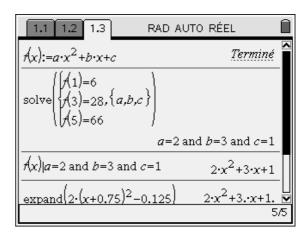
La forme du nuage suggère que f soit une fonction du second degré, soit $f(x) = a x^2 + b x + c$. Déterminons les nombres a, b et c en demandant la **Résolution** un système sachant que par exemple f(1) = 6, f(3) = 28 et f(5) = 66.

On obtient $f(x) = 2 x^2 + 3 x + 1$. On obtient la même écriture en demandant de développer l'expression obtenue dans la page graphique.

Dans la page **Tableur et listes**, taper dans la cellule grise de la colonne C la formule =f(p), on constate alors que les valeurs des deux colonnes B et C sont identiques.

En écrivant l'expression de u_n et en demandant la forme factorisée de f, on constate que les écritures sont les mêmes.

Il ne reste plus qu'à valider l'expression de f en démontrant par récurrence que pour tout n strictement positif, $u_n = f(n)$.



Soit P_n la proposition $u_n = (n+1)(2n+1)$.

Pour
$$n = 1$$
, $u_1 = \frac{6}{1} \times 1^2 = 6$, $(1 + 1)(2 \times 1 + 1) = 6$, donc p_1 est vraie.

Supposons P_n vraie au rang n, alors $u_n = (n+1)(2n+1)$,

de plus
$$u_n = \frac{6}{n} \sum_{k=1}^{n} k^2$$
, donc $\sum_{k=1}^{n} k^2 = \frac{n}{6}(n+1)(2n+1)$.

$$u_{n+1} = \frac{6}{n+1} \sum_{k=1}^{n+1} k^2 = \frac{6}{n+1} (\sum_{k=1}^{n} k^2 + (n+1)^2),$$

$$u_{n+1} = \frac{6}{n+1} \left(\frac{n}{6} (n+1)(2n+1) + (n+1)^2 \right)$$

$$u_{n+1} = n(2n+1) + 6(n+1) = 2n^2 + 7n + 6.$$

Or
$$((n+1)+1)(2(n+1)+1) = (n+2)(2n+3) = 2n^2+7n+6$$
.

Donc P_{n+1} est vraie.

Donc \mathcal{P}_n est vraie pour tout n strictement positif.

Donc
$$u_n = (n+1)(2n+1)$$
, pour tout n strictement positif, soit $\frac{6}{n} \sum_{k=1}^{n} k^2 = (n+1)(2n+1)$,

	1.1 1.2 1.3 RAD AUTO RÉEL				
A	p	■up	0		
♦ = 9	seq(x,x,1	=6/'p*∑(k^	=f('p)		
1	1	6	6		
2	2	15	15		
3	3	28	28		
4	4	45	45		
5	5	66	66		
A1	=1				

1.1 1.2 1.3	RAD AUTO RÉEL	
$(x):=2\cdot x^2+3\cdot x+1$	Terminé	
factor(Ax))	(x+1)·(2·x+1)	
<u>n</u>	Terminé	
$u(n):=\frac{6}{n}$ (k^2)		ı
k=1		ı
u(n)	$(n+1)\cdot(2\cdot n+1)$	
	4.	/8

donc, pour tout *n* strictement positif, $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$