TI-*nspire*

Etude d'une loi normale avec le TInspire

Soit *X* une variable aléatoire. On suppose que *X* suit une loi normale de paramètre m = 40 et $\sigma = 6,2$.

(On note aussi $X \sim N(40; 6, 2)$)

- 1°) Donner l'expression de f(x), la densité de X.
- 2°) Calculer f(35), f(45) et f(65).
- 3°) Représenter *f* graphiquement.
- 4°) a) Calculer $p(X \le 40), p(X \ge 20)$ et $p(30 \le X \le 45)$

b) Que représente $p(30 \le X \le 45)$ sur le graphique du 2°)?

- 5°) Déterminer *x* tel que
 - a) $p(X \le x) = 0.4$
 - b) p(X > x) = 0,01

1°) Donner l'expression de f(x), la densité de X.

Soit *X* est une variable aléatoire qui suit une loi normale de paramètre m = 40 et $\sigma = 6,2$.

D'après le cours on a
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^2}$$
 soit
$$f(x) = \frac{1}{6,2\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-40}{6,2}\right)^2}$$

2°) Calculer f(35), f(45) et f(65).

La TI-*n*spire permet de calculer les valeurs de la fonction de densité de *X*. Il faut utiliser l'instruction NormPdf.

On l'obtient

- Soit en tapant directement la commande normPdf(*x*, 40,6.2).
- Soit en tapant men Probabilité | Distributions | Normal DdP et en complétant la boite de dialogue.

normPdf(**35**, 40,6.2) correspond à *f* (35) normPdf(**45**, 40,6.2) correspond à *f* (45) ...

normPdf(**6**5,40,6.2) correspond à f(65)

▲ 2.1 2.2 2.3 3.1	RAD AUTO RÉEL	Ì
normPdf(35,40,6.2)	0.046483	
normPdf(45,40,6.2)	0.046483	
normPdf(65, 40, 6.2)	0.000019	
	3/99	9

TI-*nspire*

Probabilités | Loi normale

2.1 2.2 2.3 3.1	RAD AUTO RÉEL
normPdf(35,40,6.2)	0.046483
normPdf(45, 40, 6.2)	0.046483
normPdf(65, 40, 6.2)	0.000019
normPdf(0,4)	0.36827
normPdf(0,4,0,1)	0.36827
	5/99

Attention : Si on tape seulement **normPdf**(0.4) on obtient f(0,4) pour une loi normale centrée réduite.

3°) Représenter f graphiquement.

On entre f1(x) = normPdf(x, 40, 6.2)

4°) a) Calculer $p(X \le 40)$, $p(X \ge 20)$ et $p(30 \le X \le 45)$

Pour calculer une valeur de la fonction de répartition de *X*, c'est-à-dire $p(X \le x)$ on peut :

- Soit taper directement la commande normCdf(*x*, 40,6.2).
- Soit en tapant menu Probabilité | Distributions | Normal FdR et en complétant la boite de dialogue.

NormCdf($-\infty$, **40**, 40, 6.2) correspond à $p(X \le \mathbf{40})$

NormCdf(**20**, ∞ , 40,6.2) correspond à $p(X \ge 20)$

NormCdf(**30**, **45**, 40,6.2) correspond à $p(30 \le X \le 45)$

...

2.2 2.3 3.1 3.2 RAD AUTO	RÉEL	Î
normCdf(-∞,40,40,6.2)	0.	5
$normCdf(20,\infty,40,6.2)$	0.99937	2
normCdf(30, 45, 40, 6.2)	0.73662	6
	3	8/99

⊺I-*nspire*™

4°) b) Que représente $p(30 \le X \le 45)$ sur le graphique du 2°) ?

 $p(30 \le X \le 45)$ correspond à l'aire de la partie du plan délimitée par les droites d'équation x = 30 et x = 45, l'axe des abscisses et C_f .

On peut le visualiser en appuyant sur **Mesure | Intégrale** (puis sélectionner la courbe pour les abscisses 30 et 45)

5°) a) Déterminer x tel que $p(X \le x) = 0.4$

Pour obtenir cette valeur de *x* on peut :

- Soit taper directement la commande InvNorm(*a*, 40,6.2).
- Soit en tapant menu Probabilité |
 Distributions | Inverse Normal et en complétant la boite de dialogue.

InvNorm(**0**. **4**, 40,6.2) correspond à la valeur de *x* telle que $p(X \le x) = \mathbf{0}.\mathbf{4}$

5°) b) Déterminer x tel que p(X > x) = 0,01

2.2 2.3 3.1 3.2	RAD AUTO	RÉEL	
invNorm(0.4,40,6.2)		38.4292	
invNorm(0.99,40,6.2)		54.4234	
		28	99

Pour obtenir la valeur de *x* telle que p(X > x) = 0,01 on transformera l'équation qui

équivaut à $p(X \le x) = 0,99$

1.1 1.2	RAD AUTO RÉEL
invNorm(0.4,40,6.2)	38.4292
	1/99