\qquad
Class \qquad

We want to find the derivative of the function $f(x)=e^{x}$. We want to look at a constant (positive) base and variable exponent. The easiest function is the function above where e is the number we found before. What is the definition of e ? Does this definition help us with the derivative?

Problem 1 - The Derivative of $y=e^{x}$

So, we start with the definition of a derivative $f^{\prime}(x)=\lim _{x \rightarrow \infty} \frac{f(x+h)-f(x)}{h}$ and we use
$f(x)=e$ in that definition: $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h}=\lim _{h \rightarrow 0} \frac{e^{x} e^{h}-e^{x}}{h}=\lim _{h \rightarrow 0} \frac{e^{x}\left(e^{h}-1\right)}{h}$.

To get the answer we want, we need to evaluate $\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}$. Do you know what that limit is?

We will use two methods to evaluate it.

When we try to evaluate this limit and replace h with zero we get the indeterminate form $0 / 0$. To use L'Hôpital's rule, we would have to know the derivative of our exponential function and we do not know that yet.

Set up a table to see the possibilities.
Use the table set function for the function
$y 1=\frac{e^{x}-1}{x}$
With x starting at -0.05 and $\Delta x=0.025$.
Your table should look like the screen to the right.

Frive Ftius	:		S:
\times	-1		
-. 05	. 97541		
-. 025	. 9876		
-1.	undef		
-025	1.0126		
- 0.5	1.0254		
$x=-.015$			
Hinl\|	EiAl illta full		

Notice that the calculator does not compute the value at 0 .

What does the value of $y 1$ seem to approach at 0 ?
So let's use the limit command for this expression and see the result. What is your answer?
$\lim _{h \rightarrow 0} \frac{\left(e^{h}-1\right)}{h}=$

The Exponential Derivative

Now we can use the definition of the derivative and the result above with the function $f(x)=e^{x}$.
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h}=\lim _{h \rightarrow 0} \frac{e^{x} e^{h}-e^{x}}{h}=\lim _{h \rightarrow 0} \frac{e^{x}\left(e^{h}-1\right)}{h}=e^{x}$

At a specific point such as $x=a$, we can use the limit command to find the derivative of $f(x)=e^{x}$ at $x=a$. What is the result?
$\lim _{h \rightarrow 0} \frac{e^{(a+h)}-e^{a}}{h}=$

Now try the derivative command for the exponential function $f(x)=e^{x}$.

What is your answer?

Problem 2 - The Derivative of $f(x)=a^{x}$

What happens if we use a different base?

Use the derivative command for the following functions. What were the results? Do you notice a pattern?

$f(x)=2^{x} \quad f^{\prime}(x)=$ \qquad
$g(x)=3^{x} \quad g^{\prime}(x)=$ \qquad

The Exponential Derivative

What do you think that the derivative of the function $f(x)=a^{x}$ will be?

Why do you think this result happened?

Look at $a=e^{\ln (a)}$ and rewrite as $y=a^{x}=e^{(\ln (a) x)}$.

$\overline{a(g)}\left(1 \sigma^{\prime}(g)+x\right), x$

Now find the derivative of the following functions with the chain rule:
$f(x)=e^{\left(x^{2}\right)}$
$g(x)=e^{7 x+3}$
$h(x)=2^{5 x}$

Why does 32^{x} appear in the last problem on your calculator?

The Exponential Derivative

Problem 3 - Slope of the Exponential Function

Graph the function $f(x)=e^{x}$
Trace the graph and find a point close to $x=1$. List the coordinates. \qquad

Draw the tangent to the graph at that point. Write its equation below.

What is the relationship between the y-coordinate and the slope?

Since the derivative is the slope of the tangent line, we expect to see the y-coordinate and the slope to be identical for the function $f(x)=e^{x}$.

