Quadratic Relations Test 3A

Name

8 9 10 11 12

Question: 1

The equation $(x-3)^2 + a = 0$ has roots: x = 1 and x = b, the values of a and b are therefore:

a)
$$a = 1 \text{ and } b = 3$$

b)
$$a = 0 \text{ and } b = 3$$

c)
$$a = 2 \text{ and } b = 5$$

d)
$$a = -2$$
 and $b = 5$

e)
$$a = -4$$
 and $b = 5$

Question: 2

The factorised form of $y = (x-4)^2 - 9$ is:

a)
$$(x-2)(x-3)$$

b)
$$(x+1)(x-7)$$

c)
$$(x-1)(x-7)$$

d)
$$(x+1)(x-7)$$

e)
$$(x-1)(x+9)$$

Question: 3

The range of values of b such that $y = x^2 + bx + 16$ has two distinct roots is:

a)
$$b > 8$$

b)
$$|b| > 8$$

c)
$$b > 8$$

d)
$$b \ge \pm 8$$

e)
$$b \in R$$

Question: 4

Which one of the following would result in irrational roots for $x^2 + 6x + c = 0$

a)
$$c = 0$$

b)
$$c = 9$$

c)
$$c = -27$$
 d) $c = -91$ e) $c = -9$

d)
$$c = -91$$

e)
$$c = -0$$

Question: 5

The equation: $px^2 + (p+q)x + q = 0$ has rational roots when:

a)
$$p=2$$
 and $q=3$

b)
$$p = -2$$
 and $q = 3$

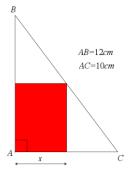
c)
$$p = \frac{2}{3}$$
 and $q = \frac{1}{2}$

d)
$$p = -2$$
 and $q = -3$

All of the above e)

Question: 6

The red rectangle is bound by triangle ABC. An expression for the area of the rectangle could be:


a)
$$Area = (12-x)(10-x)$$

b)
$$Area = x(10 - x)$$

c)
$$Area = x(12-x)$$

d)
$$Area = \frac{6}{5}x(10-x)$$

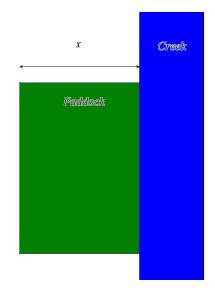
e)
$$Area = \frac{5}{6}x(12-x)$$

Question: 7

Given that $4x^2 + ax + b = 0$ has one unique root and a + b = 21 the values of a and b could be:

- a) a = 4 and b = 17
- b) a = -28 and b = 49 OR a = 12 and b = 9
- c) a = -28 and b = 49 only
- d) a=12 and b=9 only
- e) a = -4 and b = 25

Question: 8


Two consecutive positive integers are squared and added together, the result is 1105. The smaller of the two consecutive numbers is therefore:

Question: 9

A right angled triangle has hypotenuse of length 29. The two shorter sides differ by just one unit. The shortest side is therefore equal to:

Question: 10

Forty metres of fencing is available to form a paddock that is bound on one side by a creek. Write an expression for the area of the paddock.

[©] Texas Instruments 2019. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

