Ú,	Solids of Revolution	
	SolidsOfRevolution.tns	

Name _	 	
Class _	 	

Goals:

- understand the equation to find the volume
- apply the definite integral to 3D objects formed by rotating a function about an axis

Move to page 1.3.

1. The animation shows the graph of $y = 0.1x^{1.8}$ with the point (x, y) and a thin slice. What is this function rotated about?

Tech Tip: Rotate the shape by pressing **A**. Press esc to stop.

Pause the animation. Grab and move point dx.

2. a. The thin slice helps identify the *r* in the equation $dV = \pi r^2 dh$. For the volume on page 1.3, what is the radius r?

Move to page 2.1 to explore $dV = \pi r^2 dh$. Click and move the **radius** slider. The center of the circle can also be grabbed and moved.

b. Draw a rotated thin slice and identify the parts. Explain the equation for an infinitesimal amount of volume $dV = \pi r^2 dh$.

Move to page 2.2.

3. a. Sketch, in the space at the right, the shape formed by rotating the function about the *x*-axis.

The area bounded by x = 0, y = 0 and the line y = 10 - 2x is rotated about the *x*-axis. Find the volume. Show your work.

The volume of cone is $\frac{1}{3}\pi r^2 h$, where *r* is the radius and *h* is the height. Show that this agrees with the result you got from using the definite integral.

Solids of Revolution

3. b. Sketch, in the space at the right, the shape formed by rotating the function about the *y*-axis.

The area bounded by x = 0, y = 0, and the line y = 10 - 2x is rotated about the *y*-axis. Find the volume. Show your work.

Show that the volume of a cone, $\frac{1}{3}\pi r^2 h$, agrees with the answer you found using the fundamental theorem of calculus.

4. A **paraboloid** can be formed by rotating the equation ______ about the ____axis as shown on page 2.7.

Is the radius for this paraboloid, x or y? _____

Move to page 3.1. What is the volume if the parabola, from x = 0 to x = 2, is rotated around the *y*-axis? Write the set up for the definite integral and apply the fundamental theorem to show your work.

If the thin slice is dy, the limits of integration will be from y = a to y = b. What is the volume of an inscribed cone of height of 4? How does this compare with the volume of the paraboloid you found? Explain. Conjecture what the formula for a paraboloid is.

5. Move to page 4.1. Find the volume to 3 decimal places for $f1(x) = 4 \sin\left(\frac{x}{2}\right)$ from x = -5 to x = 5, rotated about the *x*-axis. Show the set up of the definite integral.