Tessellations

Time required
ID: 10252

Activity Overview

In this activity, students will explore tessellations of triangles and quadrilaterals. They will use the transformation tools of symmetry, reflections, rotations, and/or translations.

Topic: Transformational Geometry

- Given a reflection line and a geometric figure, reflect the figure to discover that lengths, angles, areas and shapes are preserved under reflections and orientations are reversed.
- Given a center and angle of rotation, rotate a figure to discover that lengths, angles, areas, shapes and orientation are preserved under rotations.
- Join the corresponding vertices of two congruent triangles and determine the isometry that links them.

Teacher Preparation and Notes

- This activity is designed to be used in a high school or middle school geometry classroom.
- This activity is designed to be student-centered with the teacher acting as a facilitator while students work cooperatively. Use the following pages as a framework as to how the activity will progress.
- A tessellation is a tiling pattern that covers the plane without any gaps or overlaps. Where the tiling shapes meet (either at vertices or along edges), exactly 360° must be accounted for by the angles of the shapes.
- Notes for using the TI-Nspire ${ }^{\text {TM }}$ Navigator ${ }^{\text {TM }}$ System are included throughout the activity. The use of the Navigator System is not necessary for completion of this activity.
- To download the student and solution TI-Nspire documents (.tns files) and student worksheet, go to education.ti.com/exchange and enter "10252" in the keyword search box.

Associated Materials

- Tesselations_Student.doc
- Tesselations.tns
- Tesselations_Soln.tns

Suggested Related Activities

To download any activity listed, go to education.ti.com/exchange and enter the number in the keyword search box.

- Transformation: Reflections (TI-Nspire technology) - 13129
- Glide Reflections(TI-Nspire technology) - 13133

Problem 1 - Triangles

Students can read the directions for the first problem on pages 1.2 and 1.3. When they advance to page 1.4, they will see a Control triangle and a Copy triangle.
Using the Angle tool in the Measurement menu, students are to measure the angles of the Control triangle only.

Students are to construct the midpoints of the sides of the Copy triangle using the Midpoint tool in the Construction menu.

The Symmetry tool performs a reflection through a point (which is equivalent to a half-turn or 180° rotation. Students should select the tool, select the triangle, and then select the midpoint. This will reflect the triangle through the midpoint.

Students could also use the Rotation tool to complete the tessellation by placing the number 180 on the screen. They should select the tool, select the rotation point (the midpoint), select the number, and then select the triangle.
Students should continue to make copies of the triangle using the Midpoint and Symmetry and/or Rotation tools until they cover a portion of the screen with the tessellation.

They are to make a sketch on the worksheet.

TI-Nspire Navigator Opportunity: Screen Capture
See Note 1 at the end of this lesson.

Once finished, students can drag a vertex of the Control triangle and observe the changes in the tessellation.

They can then answer the questions on the worksheet.

Ask students: How many angles come together at one vertex of the tessellation? What are the measures of these angles?

Students may measure the angles directly using the Angle tool or use deductive reasoning to conclude what the measures are based on the symmetry transformation.
Then, they should find the sum of the measures of the angles at one vertex.
Using the Text tool, students can create an expression ($\mathbf{a + b} \mathbf{+} \mathbf{c}+\mathbf{d}+\mathbf{e}+\mathbf{f}$) to sum up the 6 angles. Then they can evaluate the expression using the Calculate tool.

Lastly, they can drag a vertex of the Control triangle and observe the results.

TI-Nspire Navigator Opportunity: Quick Poll

See Note 2 at the end of this lesson.

Problem 2 - Rectangles

On page 2.2, students are to use the Reflection

On page 2.4, students are given the same rectangle, but this time they are to use the Translation tool and the constructed vector to create the tessellation.

To perform the translation, students need to select the rectangle and then the vector. They can create additional vectors, from the Points \& Lines menu, as needed.
Students should make a sketch and record observations on the worksheet when finished.
On page 2.6, different vectors are used. Before beginning, ask students what pattern they think will result.

On page 2.8, students will use the Rotation tool. The number 90 has been placed on the screen.

To perform the rotation, students need to select the rectangle, the number 90 , and a point as the center of rotation (a vertex of the rectangle).
The rotation is completed in a counter-clockwise direction.

TI-Nspire Navigator Opportunity: Screen Capture

See Note 3 at the end of this lesson.

Problem 3 - Quadrilaterals
On page 3.2, students will see a Control quadrilateral and a Copy quadrilateral.
They are to use any of the Transformation tools from the previous Problems to create the tessellation of the quadrilateral.
Ask students: How many angles come together at one vertex of the tessellation? What are the measures of these angles?

Students are to use the Text and Calculate tools to find the sum of the measures.

They can then drag a vertex of the Control quadrilateral and observe the results.

TI-Nspire Navigator Opportunities

Note 1

Problem 1, Screen Capture
Use Screen Capture to display the progress of the class as they tessellate the screen. It will be interesting for students to see that they all end up with the same tessellation, even though everyone did their symmetries in a different order.

Note 2

Problem 1, Quick Poll
Send two Quick Polls for the questions on 1.5 and 1.6.

Note 3

Problem 2, Screen Capture
Use Screen Capture to display the progress of the class as they tessellate each of the screens on pages 2.2 to 2.8 . It will be interesting for students to see that they all end up with the same tessellation, even though everyone did their isometries in a different order.

