Name ₋	 	 	
Class			

Problem 1 – Exploring the Euler Line

On page 1.3, acute $\triangle ABC$ is given. Construct the centroid, circumcenter, incenter, and the orthocenter and label them Ce, Ci, I, and O, respectively. Construct the line between points O and Ci. This line is called the **Euler Line**.

- 1. What do you notice about the orthocenter, O, the centroid, Ce, and the circumcenter, Ci?
- 2. Move point *B* and answer the following question. For what type of triangle does the incenter, *I*, lie on the Euler Line?
- 3. Move point C and answer the following question: What kind of triangle guarantees that the orthocenter, O, and the circumcenter, Ci, are on the sides of $\triangle ABC$?

Problem 2 - Exploring Ratios of the Euler Line

On page 2.2, you are given $\triangle ABC$. The centroid, C, the circumcenter, R, and the orthocenter, T, are provided. Construct \overline{TR} , \overline{CR} , and \overline{CT} . Find TR, CR, and CT (remember TR means the length of \overline{TR}). Finally, calculate $\frac{TR}{CR}$.

- 4. What is the ratio of $\frac{TR}{CR}$?
- 5. How much longer is \overline{TR} than \overline{CR} ?
- 6. What is the ratio of *CR* to *TR*?
- 7. What is the ratio of CR to CT?