Stretching the Quads

Time required
ID: 11640
45-60 minutes

Activity Overview

In this activity, students will stretch and translate the parabola given by $y=x^{2}$ and determine the effects on the equation. Students will also explore finding the vertex and zeros of a parabola and relate them to the equation.

Topic: Quadratics

- Transformations
- Finding Roots
- Minimum/Maximum
- Standard form, Intercept form

Teacher Preparation and Notes

- This activity is meant to be explored using the TI-Nspire.
- Students will need to grab the parabola and points to move them around. The teacher should be familiar with the two ways a parabola can be translated and how to grab objects.
- Teacher will need to connect all parts of this activity in a follow up lesson or use the activity over two days to allow for students to algebraically manipulate equations between forms.
- Notes for using the TI-Nspire ${ }^{\text {TM }}$ Navigator ${ }^{\text {TM }}$ System are included throughout the activity. The use of the Navigator System is not necessary for completion of this activity.
- To download the student TI-Nspire document (.tns file) and student worksheet, go to education.ti.com/exchange and enter "11640" in the keyword search box.

Associated Materials

- StretchingTheQuads_Student.doc
- StretchingTheQuads.tns

Suggested Related Activities

To download any activity listed, go to education.ti.com/exchange and enter the number in the keyword search box.

- Bridge on the River Quad (TI-Nspire technology) - 9531
- Folding Parabolas (TI-Nspire technology) - 9465
- Graphing Quadratic Functions (TI-Nspire technology) - 9186

Problem 1 - Stretching a Parabola

In this problem, students are told $y=x^{2}$ is the basic equation for the standard form a parabola. Students then use a slider to change the value of a to stretch the graph and observe how the equation changes. Students will make a connection between the curvature of the parabola and the equation. Several questions follow to determine if students have made a connection

TI-Nspire Navigator Opportunity: Quick Poll

See Note 1 at the end of this lesson.

Problem 2 - Translating a Parabola

In this problem, students will translate the parabola $y=x^{2}$ by grabbing the vertex. Students will observe how the graph changes and make a connection between the vertex and equation. Several questions follow to determine if students have made a connection.

Discussion Questions:

- How is the equation different when the vertex is in the first quadrant compared to the second quadrant?
- How can we change the equation to standard form?

TI-Nspire Navigator Opportunity: Quick Poll

See Note 1 at the end of this lesson.

Problem 3 - Finding Zeros of Quadratic Graphically

In this problem, the students will move a point on the graph of a parabola to find the zeros and the maximum/minimum. Students will answer a question about the zeros found in the exploration.

Discussion Questions:

- What is similar about the coordinates of the points representing the x-intercepts?
- How does the x-coordinate of the vertex relate to the two x-intercepts?

- What happens to the maximum/minimum when there is only one intercept?
- How can we algebraically find the zeros of the functions?

Problem 4 - Connecting Zeros to the Equation

In this problem, students will find the zeros of the parabola by finding the intersection of the parabola and the x-axis. Students will see the factored form of the quadratic equation and draw a connection between the zeros and the factored form. Students will then view the intercept form of a quadratic equation to determine how to use this form to find the zeros of the function without a graph.

Discussion Questions:

- How can we use the factored form of the quadratic equation to find the zeros?
- Is there an algebraic way to find the zeros?
- How can you find the zeros of a quadratic without the graph?
- How do we change the equation from intercept form to standard form?

Student Solutions

1. The coefficient of x^{2} changes.
2. The graph opens down.
3. Negative
4. 0.5 (other acceptable answers are between 0 and 1)
5. There is now a number subtracted from x before x is squared and a constant term outside of the square.
6. The vertex of the parabola
7. $(-4,-2)$
8. $(3,1)$
9. $c(x)=-3(x+1)^{2}+1$
10. Sample answer: $y=(x+2)^{2}+3$
11. Sample answer: $y=-3(x+2)^{2}+3$
12. The x-intercepts.
13. -2 and 2
14. -1 and 4
15. The numbers subtracted from x are the zeros.
16. The x-intercepts
17. -2 and 4

TI-Nspire Navigator Opportunities

Note 1

Problem 1, Quick Poll

Develop a deeper understanding with the class of the effects that the coefficient of x^{2} has on the graph by posing the following questions:

What happens to the graph if the coefficient of x^{2} between 0 and 1 ? Greater than 1 ?
Less than 0 ? Equal to 0 ?

Note 2
 Problem 2, Quick Poll

Send a few quick polls to the class asking what happens to the graph of $y=x^{2}$ when the constant k is positive? Negative? What happens to the graph of $y=x^{2}$ when the constant h is positive? Negative?

