Teacher Information (Continued)

Activity 9

Graphing an Extra Dimension

Answer to Instructions: Part A

4. When $a>1$, the graph moves towards the y-axis.

When $-1<a<0$, the graph reflects over the x-axis and moves away from the y-axis.

Answers to Instructions: Part B

6. In the $y z$ plane, the trace is a parabola, opening upward. In the $x y$ plane, the trace is a single point.
7. The resulting trace is a circle for $z>0$.
8. The parabolic trace in the $x z$ plane is moved towards the z-axis.
9. In the $x z$ plane, the trace is a parabola, opening upward. In the $y z$ plane, the trace is a parabola opening upward, moved towards the z-axis. In the $x y$ plane, the trace is a single point.
10. The trace is a circle when $a=b$; otherwise, it is elliptical.
11. The parabolic trace in the $y z$ plane opens downward instead of upward.
12. In the $x z$ plane, the trace is a parabola, opening downward. In the $y z$ plane, the trace is a parabola, opening upward. In the $x y$ plane, the trace is a single point.
13. Parabolic traces in the $x z$ and $y z$ planes both open downward.

Answers to Questions

1. The trace in the $x z$ and $y z$ planes is parabolic and the trace in planes parallel to the $x y$ plane is elliptical (circular if $a=b$).
2. Answers will vary. The surface is called a hyperbolic paraboloid because the $x z$ and $y z$ plane traces are still parabolic, but the trace in planes parallel to the $x y$ plane is a hyperbola.
