Name \qquad
Class \qquad

In this activity, a number pattern described in a paper written in 1653 by French mathematician Blaise Pascal will be used to simplify the process of expanding binomials.

On the left below, the first 7 rows of Pascal's Triangle are given. On the right, the same pattern is shown using combination notation. Letting n represent the row number, the top row is $n=0$.

1. Complete the last row on the right.

Problem 1 - Exploring $(x+b)^{n}$
On the Home screen, use the Expand command from the Algebra (F2) menu to expand the following binomials.
2. $(x+1)^{0}=$
$(x+1)^{1}=$
$(x+1)^{2}=$
$(x+1)^{3}=$
3. What do you notice about the coefficients? The exponents? How do the expansions above seem to relate to Pascal's Triangle?

Expanding Binomials

Expand the following. The letter b represents any integer value.
4. $(x+b)^{0}=$
$(x+b)^{1}=$
$(x+b)^{2}=$
$(x+b)^{3}=$
5. What effect does b have on the expanded binomial?
6. Rewrite $1 \cdot x^{3}+3 \cdot b \cdot x^{2}+3 \cdot b^{2} \cdot x+1 \cdot b^{3}$ using combination notation.

Problem 2 - Exploring $(a x+1)^{n}$

7. Expand the following binomials. The letter a represents any integer value.

$(2 x+1)^{0}=$	$(a x+1)^{0}=$
$(2 x+1)^{1}=$	$(a x+1)^{1}=$
$(2 x+1)^{2}=$	$(a x+1)^{2}=$
$(2 x+1)^{3}=$	$(a x+1)^{3}=$

8. What effect does a have on the expanded binomial?
9. Write $(a x+1)^{4}$ in expanded form using Pascal's triangle. Do not use the calculator.
10. Rewrite $(a x+1)^{4}$ in expanded form using combination notation.

Expanding Binomials

Problem 3 - Exploring $(a x+b)^{n}$

11. Expand the following binomials. Remember, a and b represent integer values.
$(3 x+2)^{0}=$
$(3 x+2)^{1}=$
$(3 x+2)^{2}=$ $(3 x+2)^{3}=$

$$
(a x+b)^{0}=
$$

$$
(a x+b)^{1}=
$$

$$
(a x+b)^{2}=
$$

$$
(a x+b)^{3}=
$$

12. What is the pattern involving a and b in $(a x+b)^{n}$?
13. Write expansion of the following binomials using combination notation. Remember that the first and last term have coefficients of 1.
$(a x+b)^{0}=$
$(a x+b)^{1}=$
$(a x+b)^{2}=$
$(a x+b)^{3}=$
14. The pattern established in this problem can be generalized as the Binomial Theorem. State the Binomial Theorem by writing the first two and last two terms of the expanded binomial $(a x+b)^{n}$ using combination notation.
$(a x+b)^{n}=$

Expanding Binomials

Extra Problems

Use the Binomial Theorem to expand the following binomials.

1. $(6 x+1)^{5}$
2. $(x+7)^{6}$
3. $(3 x+5)^{4}$
4. $(7 x+4)^{8}$
